

Trustworthy AI – Obligation or Entrepreneurial Opportunity?

EAA e-Conference on Data Science & Data Ethics

29 June 2021

Dr. Maximilian Poretschkin Fraunhofer Institute for Intelligent Analysis and Information Systems

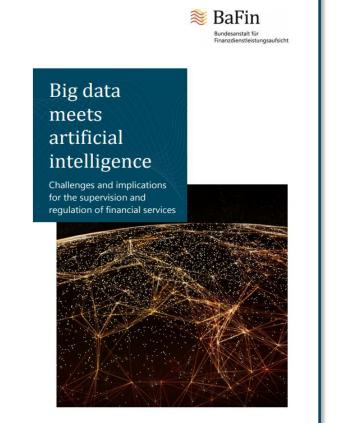
Data - Ethics - Actuary

Image sources: © welcomeinside - stock.adobe.com; © Anthony Brown - stock.adobe.com; © Cozine - stock.adobe.com; © samrit - stock.adobe.com; © WrightStudio - stock.adobe.com; © Zerbor - stock.adobe.com; © REDPIXEL - stock.adobe.com; © Tom Bayer - stock.adobe.com

... AND CHANGES THE INDUSTRY DISRUPTIVELY

EXAMPLES OF NON-INTENDED OR INCORRECT BEHAVIOR OF AI-APPLICATIONS

Image source: ©Zerbor - stock.adobe.com


GUARDRAILS FOR ARTIFICIAL INTELLIGENCE

INVESTIGATION OF IMPLICATIONS FOR SUPERVISION HAS ALREADY STARTED IN 2018

- Embedding BDAI within a proper business organization
- No black box excuses explainability/traceability of models is necessary
- Continuing to develop existing governance concepts
- Defining supervisory requirements for the explainability and effectiveness of compliance processes
- Defining prerequisites for BDAI use in models requiring supervisory approval
- Addressing increased information security risks and using BDAI to combat them

Source: Big Data meets Artificial Intelligence, Challenges and implications for the supervision and regulation of financial services, BaFin, 2018

REQUIREMENTS FOR THE USE OF ARTIFICIAL INTELLIGENCE BY THE EU HLEG AI

Human agency and oversight

• Fundamental rights, human agency and human oversight

Technical robustness and safety

 Resilience to attack and security, fall back plan and general safety, accuracy, reliability and reproducibility

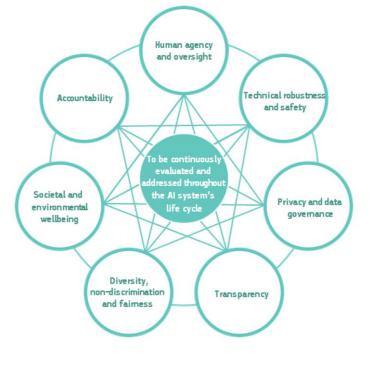
Privacy and data governance

• Respect for privacy, quality and integrity of data, and access to data

Transparency

• Traceability, explainability and communication

Diversity, non-discrimination and fairness


• Avoidance of unfair bias, accessibility and universal design, and stakeholder participation

Societal and environmental wellbeing

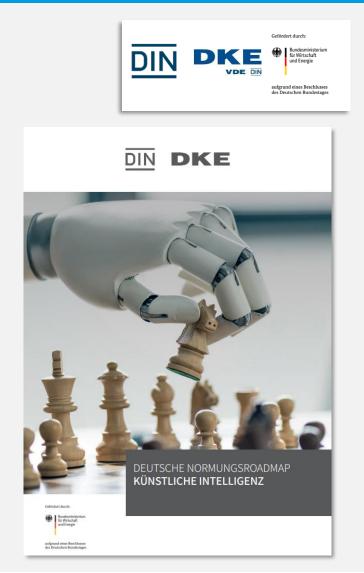
• Sustainability and environmental friendliness, social impact, society and democracy

Accountability

• Auditability, minimisation and reporting of negative impact, trade-offs and redress.

"The list of requirements is non-exhaustive."

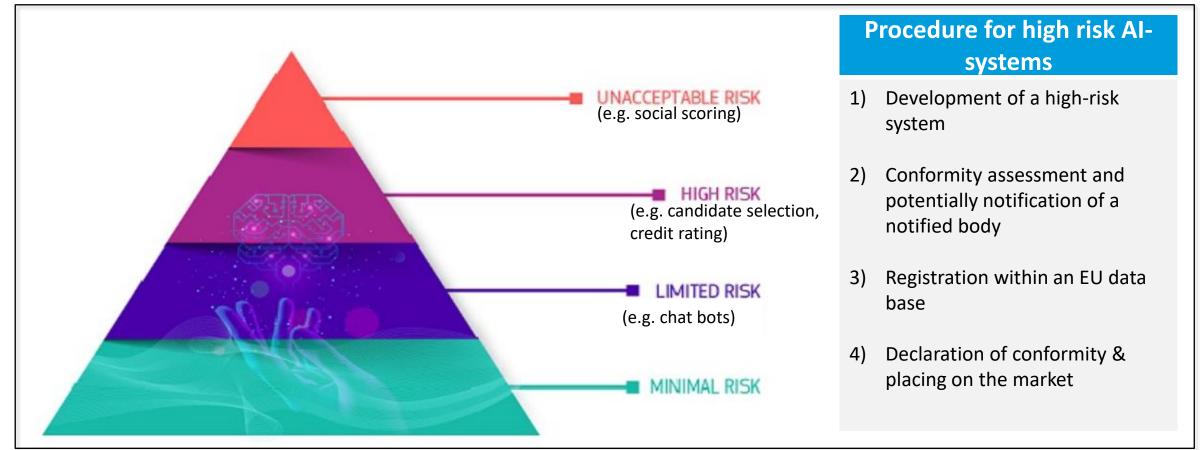
GERMAN STANDARDIZATION ROADMAP HAS BEEN PUBLISHED IN DECEMBER 2020


WORKING GROUP QUALITY, CONFORMITY ASSESSMENT AND CERTIFICATION

Two deliverables for establishing a testing procedure:

Data - Ethics - Actuary

- 1) Testing framework that guarantees comparability of tests (and is compatible with existing IT testing procedures!).
 - Process testing (standards for the development and operation of AI systems)
 - Product testing (verification of assured properties)
 - Differentiated assurance levels / testing depths
- 2) Criteria frameworks that operationalize trustworthiness requirements and map AI-specific challenges.
 - Use case dependency in formulation is challenge (metrics, thresholds)
 - Completely new testing tools and methods



EU HAS RECENTLY PUBLISHED A PROPOSAL TO REGULATE AI-SYSTEMS

MANY INSURANCE USE CASES ARE AFFECTED

Data - Ethics - Actuary

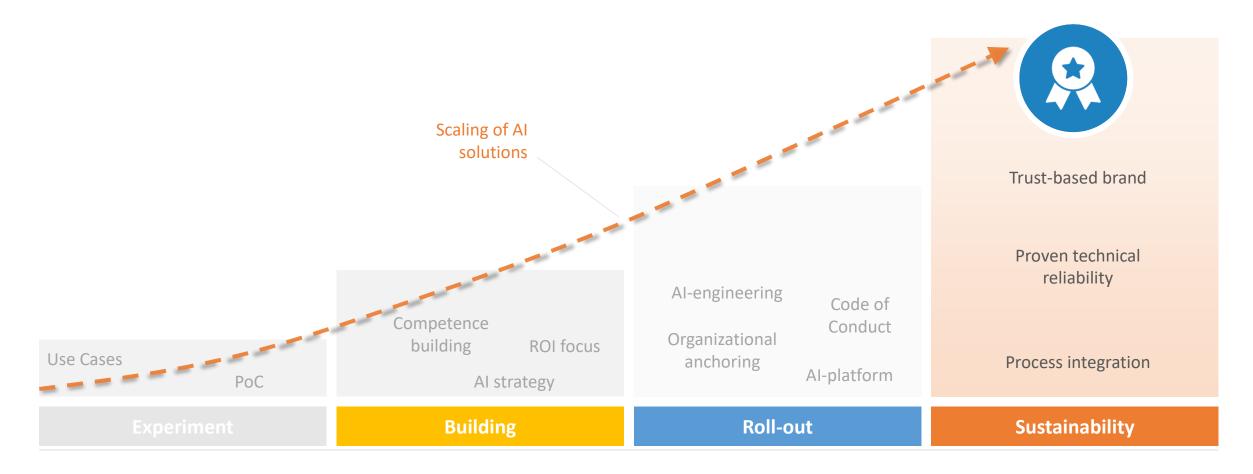
Procedure to systematically evaluate risks of AI-Systems is crucial!

Image source: https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence

DO EUROPEAN COMPANIES SUFFER FROM OVER-REGULATION?

AN UNFAIR RACE? WE HAVE TO FIND A MIDDLE GROUND

Image source: Adopted from Prof. Dr. Dr. Wolfgang Wahlster, Plattform Lernende Systeme


ENTRE-PRENEURIAL OPPORTUNITY

AI ENTERS THE SCALING PHASE -SUSTAINABILITY REQUIRES TRUST

FROM AI EXPERIMENT TO SUSTAINABLY SCALABLE AI SOLUTION

Future Spuntshow Shares and Share

TRUST IN ORGANIZATIONS THROUGH AI MANAGEMENT SYSTEMS

GOVERNANCE, MANAGEMENT & TECHNICAL-ORGANIZATIONAL MEASURES

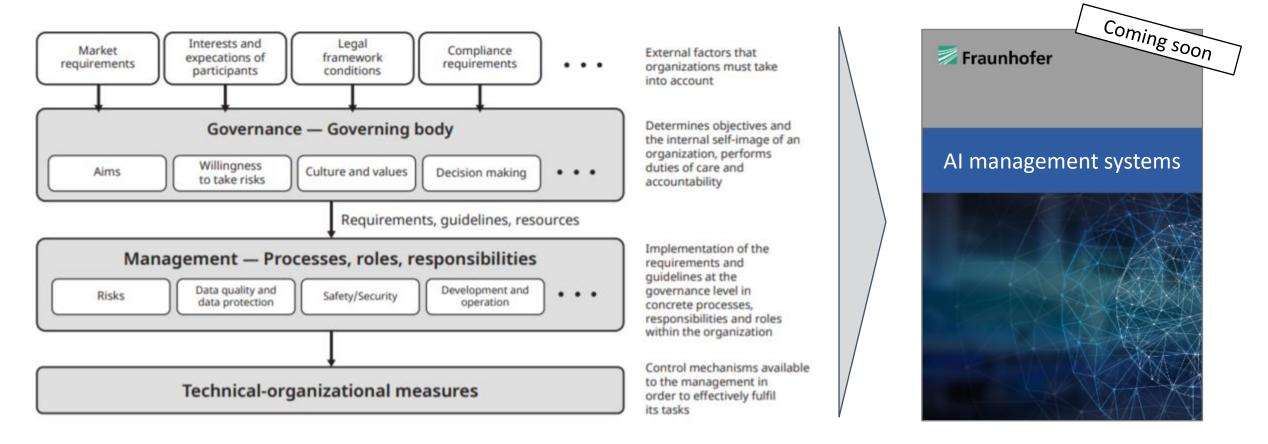


Image source: GERMAN STANDARDIZATION ROADMAP ON ARTIFICIAL INTELLIGENCE, DIN & DKE, 2019

THE MAIN USE CASES CAN BE DIVIDED INTO 4 CATEGORIES

Building internal trust

Building external trust

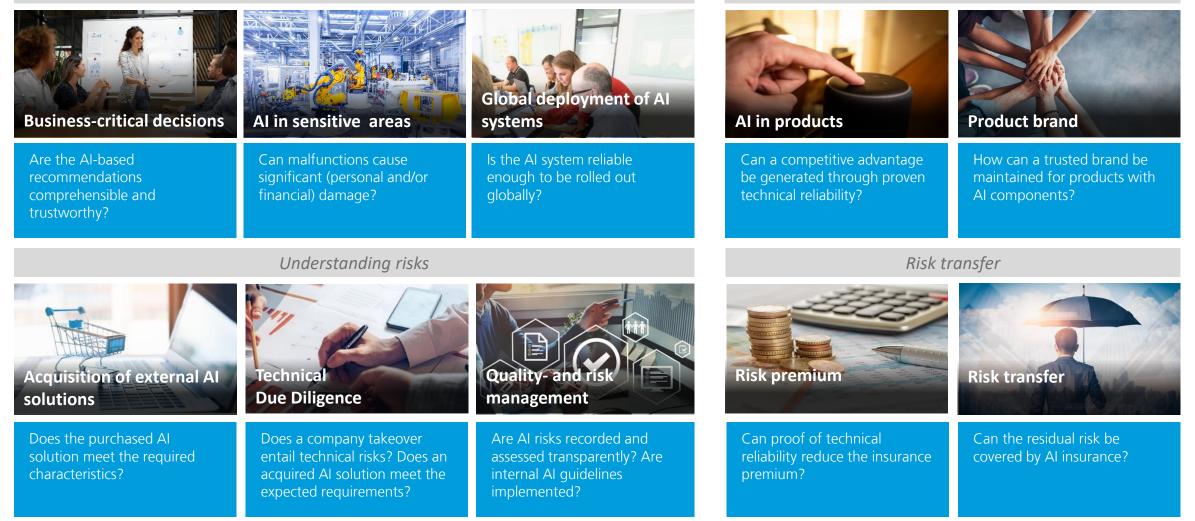


Image sources: fizkes - stock.adobe.com, Nataliya Hora - stock.adobe.com, Fraunhofer IAIS, tanaonte - stock.adobe.com, Jacob Lund - stock.adobe.com, Looker_Studio - stock.adobe.com, amnaj - stock.adobe.com, Song_about_summer - stock.adobe.com, Zerbor - stock.adobe.com, TimeStopper - stock.adobe.com

EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 14

CHALLENGES FOR THE COVERAGE OF AI RISKS

CLASSICAL APPROACHES ARE NOT TRANSFERABLE

Data from past damage caused by AI applications is scarce

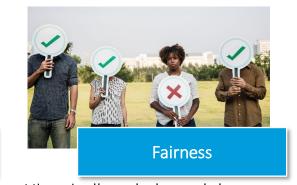
Risks are AI application-specific and can only be generalized to a limited extent

AI risks and damage scenarios are continuously changing. Approaches and competencies must be continuously updated

"Silent AI risks" in existing policies must be made transparent

Icon source: flaticon

SYSTEMATIC EVALUATION OF AI-RISKS



TYPICAL RISK FIELDS OF AI-SYSTEMS

Key questions concerning ethical issues

Historically unbalanced data

Autonomy & Control

Appropriate degree of autonomy

Incomprehensibility of results from neural networks

Reliability

Robustness of results processed by AI-systems

Safety risks due to probabilistic output from AI component

New types of personal data through AI

Image sources: https://www.pexels.com/de-de/foto/afroamerikaner-betrubt-draussen-farbige-frau-1656594; <u>https://www.pexels.com/photo/person-using-white-tablet-computer-displaying-location-text-1305305</u>; <u>https://pixabay.com/de/illustrations/auge-iris-biometrie-iriserkennung-2771174</u>; <u>https://pixabay.com/de/illustrations/sicherheit-schloss-sicher-internet-1202344</u>; https://www.pexels.com/photo/ballpen-blur-close-up-computer-461077

ENTIRE LIFECYCLE OF AI-SYSTEM NEEDS TO BE TAKEN INTO ACCOUNT

Design	 The conception and architecture of the AI-system which ensures that certain characteristics are fulfilled "by design", like Privacy-by-Design, Safety-by-Design and Verifiability-by-Design. 	
	 The selection, augmentation, pre-processing of the training-, test- and input data of the AI–system as a key pre-requisite for a high quality of the AI-system. 	
	 Com- The selection of a method/algorithm, the training and test/validation of the model, aspects of transparency and explainability. The implementation into (standard) software. 	
En C	 The embedding of the AI-component into the AI-system with a focus on those aspects of the AI-system whose behaviour is based on the AI component. 	
• Application-related testing and assurance of the model's quality during operations. Verifiability and logging of the behaviour which is based on the AI-component.		

Icon source: https://iconmonstr.com/construction-35-png; https://iconmonstr.com/folder-20-png/

Fundamental and a second secon

WHAT IS THE STARTING POINT OF DISCUSSING FAIRNESS?

- Case 1: There is a **commonly preferred label**
 - We don't want to be refused that label due to
 - gender, ethnicity, ...
 - Such attributes should not play a role in the decision process
- Case 2: There is **no commonly preferred label**
 - But we care whether we are assigned the correct label
 - We don't want to be treated with less care / worse service quality due to
 - gender, ethnicity, ...
 - Such attributes should not influence the model performance

The @AppleCard is such a fucking sexist program. My wife and I filed joint tax returns, live in a communityproperty state, and have been married for a long time. Yet Apple's black box algorithm thinks I deserve 20x the credit limit she does. No appeals work.

9:34 nachm. • 7, Nov. 2019 • Twitter for iPhor

Gender was misidentified in up to 12 percent of darker-skinned males in a set of 318 photos.

Gender was misidentified in **35 percent of darker-skinned females** in a set of 272 photos.

Icon sources: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing; <u>https://www.pexels.com/de-de/foto/afroamerikaner-betrubt-draussen-farbige-frau-1656594</u>; Joy Buolamwini, M.I.T. Media Lab

Data - Ethics - Actuary

OUTPUT OF AI-APPLICATION REFLECTS BIAS IN DATA

DATA IS A MAJOR CAUSE OF DISCRIMINATION BY AI-APPLICATIONS

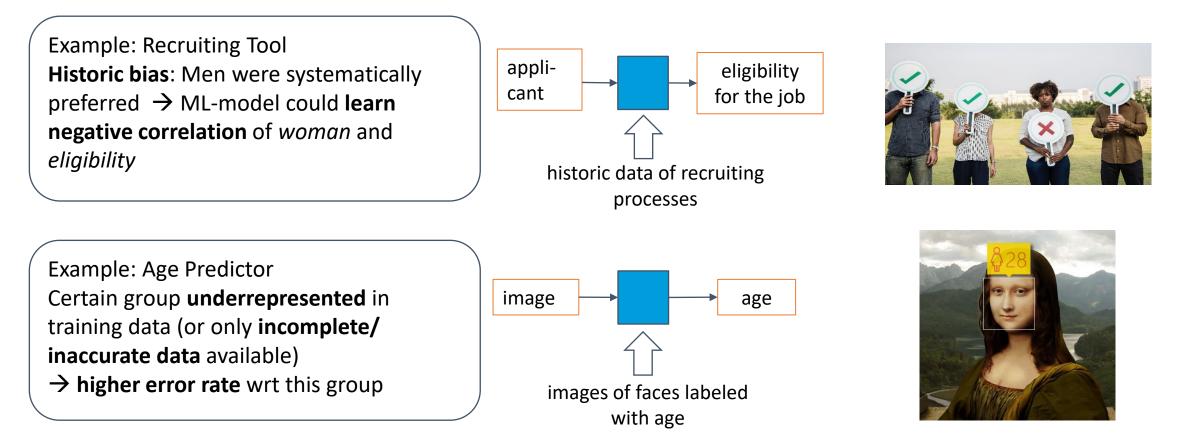
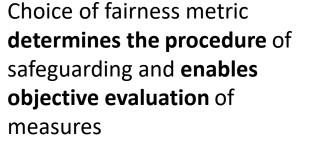


Image sources: <u>https://www.pexels.com/de-de/foto/afroamerikaner-betrubt-draussen-farbige-frau-1656594</u>; www.how-old.net

FAIRNESS NEEDS A QUANTITATIVE DEFINITION

CHOICE OF FAIRNESS METRIC IS CRUCIAL FOR SAFEGUARDING

Risk analysis


What are the **risks** regarding fairness?

Which **concept of fairness** is appropriate in the given context?

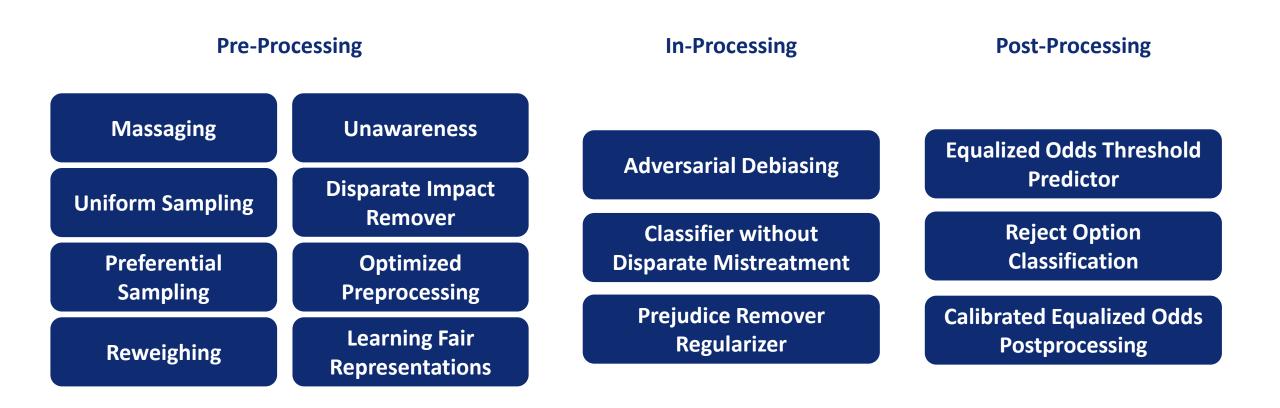
To what extent is there a **trade-off** between fairness and utility of the application?

Icon sources: Flaticon.com icons by srip: Scale blue, risk blue, collaboration blue

Data - Ethics - Actuary

SELECTION OF MOST COMMON FAIRNESS METRICS AT A GLANCE

WIDE RANGE OF METRICS / FAIRNESS CONCEPTS


Concepts of grou	Other concepts	
Statistical/Demographic Parity	Overall Accuracy Equality	Individual Fairness
Predictive Rate Parity	Treatment Equality	Causal Discrimination
Equalized Odds	Well-Calibration	Counterfactual Fairness
Equal Opportunity	Test-fairness	

Future Substantial States and Sta

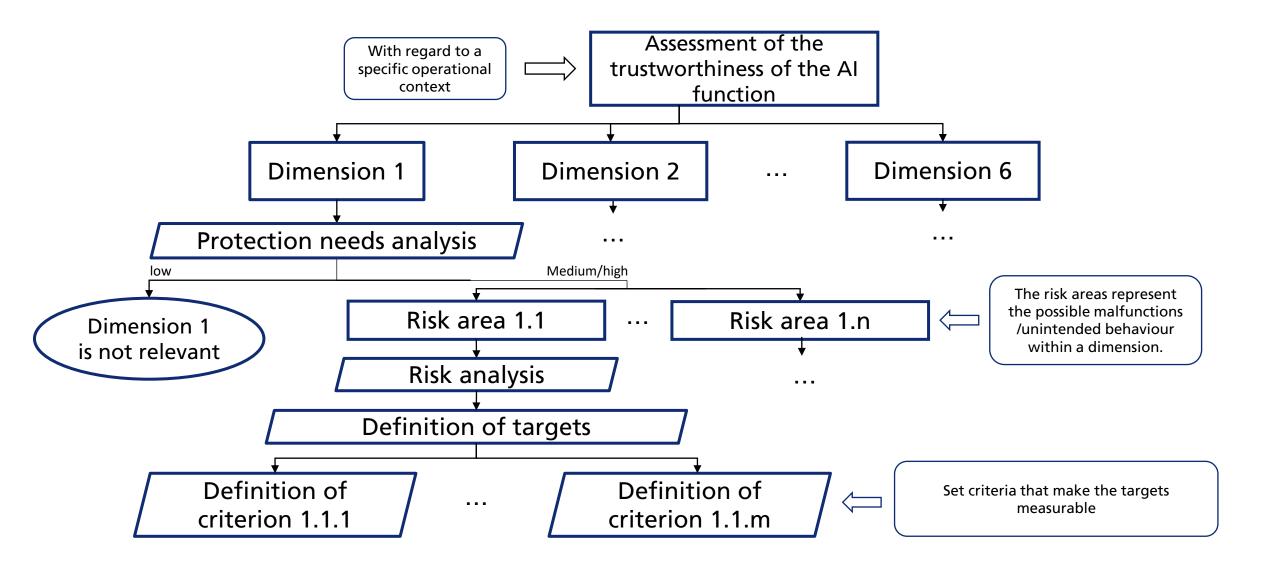
SELECTION OF METHODS TO MITIGATE UNFAIRNESS AT A GLANCE

MITIGATE UNFAIRNESS BY MODIFYING DATASETS FOR TRAINING

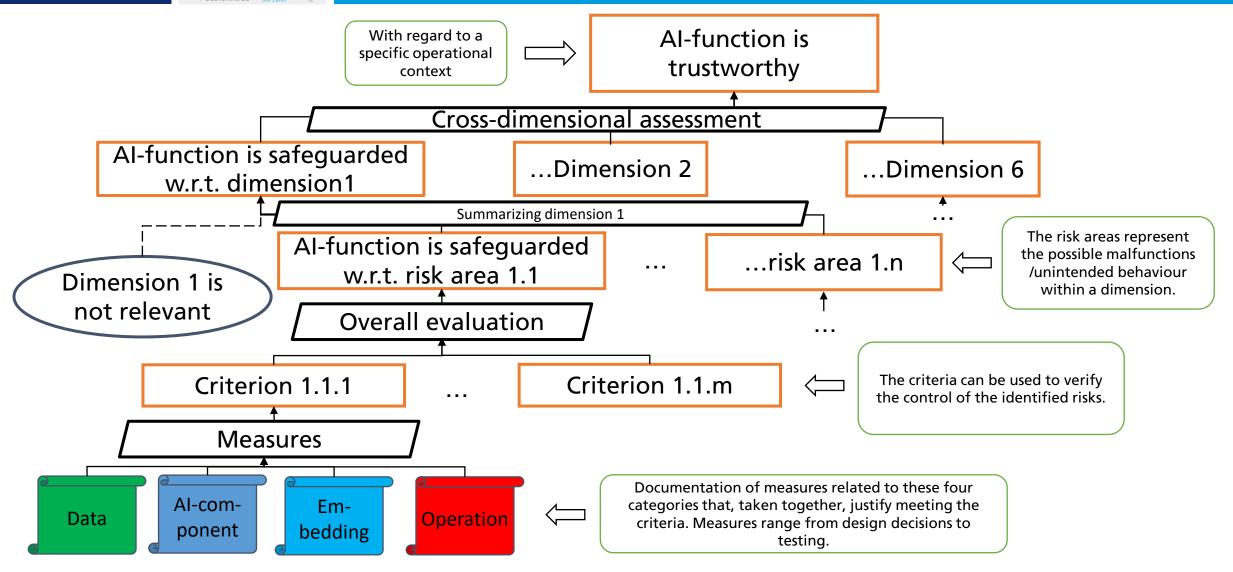
Data - Ethics - Actuary

STRUCTURED RISK ASSESSMENT NECESSARY FOR ALL AI RISK DIMENSIONS

ASSESSMENT CATALOGUE PROVIDES GUIDANCE


Dimension	Risk area	Dimension	Risk area
Fairness	Fairness Control of dynamics	Privacy	Protection of personal data
Autonomy and Control	Distribution of tasks between human and Al-system		Protection of business-relevant information Control of dynamics
	Information and empowerment of users and stakeholders	Reliability	Reliability during regular operation Robustness
	Control of dynamics		Evasion strategies Estimation of uncertainty
Transparency	Explainability to users		Control of dynamics
	Interpretability for experts	Safety and	Functional safety Integrity and confidentiality
	Auditability	Security	Availability
	Control of dynamics		Control of dynamics

Assessment catalogue is available here: www.iais.fraunhofer.de/de/forschung/kuenstliche-intelligenz/ki-pruefkatalog


Uture spin and spin a

TOP-DOWN APPROACH WITH RISK ANALYSIS FOR SPECIFIC USE CASE

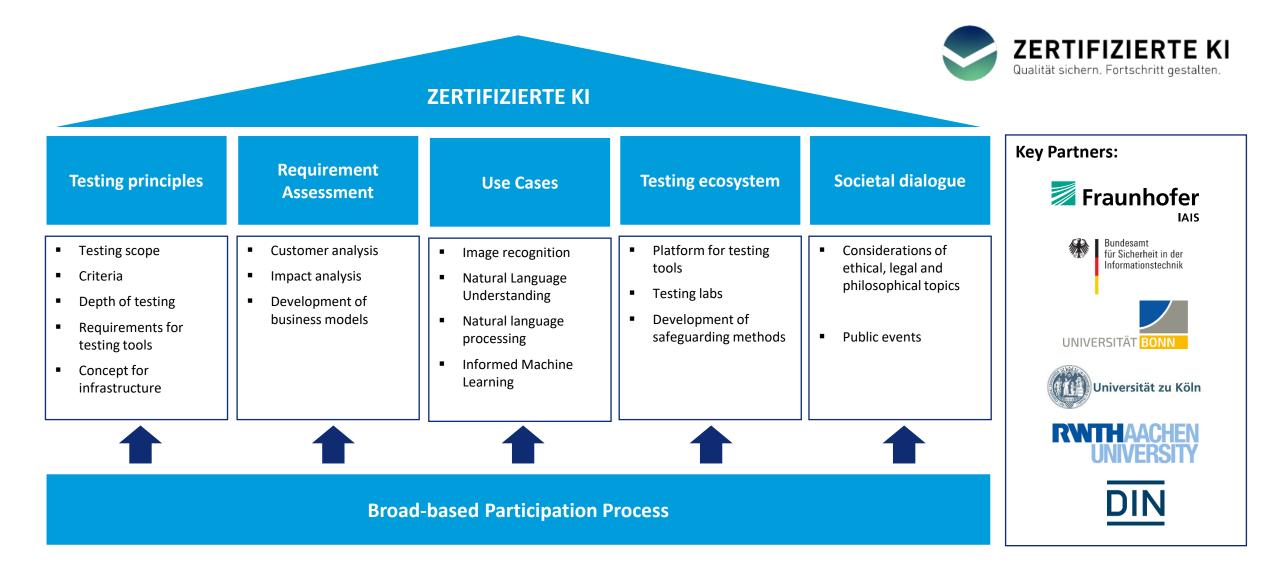
BOTTOM-UP APPROACH FOR CREATING A SAFEGUARDING ARGUMENTATION

STRATEGIC PARTNERSHIP BETWEEN FRAUNHOFER AND BSI ON TRUSTWORTHY AI

JOINT PROGRAMME TO DEVELOP TESTING METHODS FOR AI-SYSTEMS

Data - Ethics - Actuary

BSI @ @BSI_Bund · 24. Nov. 2020 ***
Künstliche Intelligenz ist Schlüsseltechnologie der Gegenwart. #KI-Systeme müssen vertrauenswürdig sein und verlässlich funktionieren. Wir starten strategische Kooperation mit @FraunhoferIAIS: bsi.bund.de/DE/Presse/Pres...
#DeutschlandDigitalSicherBSI @WirtschaftNRW @_KINRW @a_pinkwart
Künstliche Intelligenz sicher gestalten
BSI und Fraunhofer-IAIS unterzeichnen Kooperationsvereinbarung


- KI-Zertifizierung "Made in Germany" voranbringen
- Entwicklung von Pr
 üfverfahren als Basis f
 ür technische Standards und Normen
- Zusammenarbeit mit Partnern aus Deutschland und Europa
- erstes großes Vorhaben: Flagship-Projekt "Zertifizierte KI" der Kompetenz-Plattform Künstliche Intelligenz Nordrhein-Westfalen (KI.NRW)

Bundesamt für Sicherheit in der Informationstechnik

FLAGSHIP-PROJECT ZERTIFIZIERTE KI

AUTOMATED AI QUALITY ASSESSMENT

04

ASSESSING THE QUALITY OF AI-APPLICATIONS

Quality estimation despite **restricted test coverage**

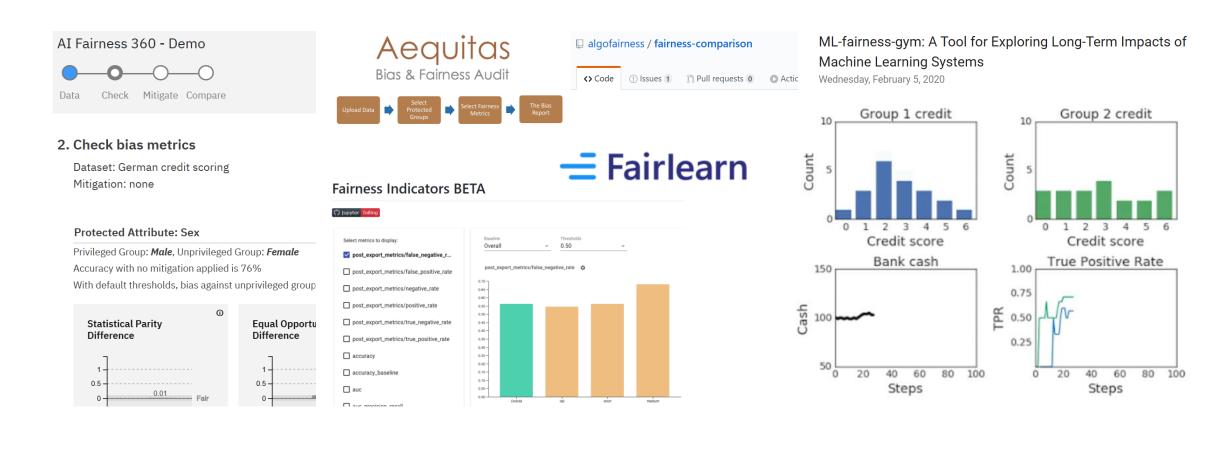
Quantitative minimal requirements are highly use case specific

Manual tests are time consuming or uncomplete

Dynamics of AI-systems (continuous learning -> continuous assessment)

Comprehensibility or explainability for human auditors/ assessors

Icon source: <u>https://iconmonstr.com/text-25-png</u>; <u>https://iconmonstr.com/school-7-png</u>; <u>https://iconmonstr.com/networking-7-png</u>; <u>https://iconmonstr.com/gear-11-png</u>; <u>https://iconmonstr.com/search-thin-png</u>; <u>https://iconmonstr.com/search-thin-search-thin-png</u>; <u>https://iconmonstr.com/search-thin-search-th</u>

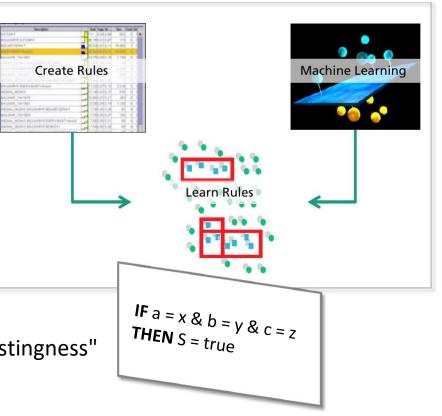

EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 30

EXAMPLE 1: FAIRNESS-TOOLS FOR GROUP FAIRNESS

OPEN-SOURCE PACKAGES FOR METRICS, ALGORITHMS AND LONG-TERM SIMULATION

Future Spugarous Sugarous Su Sugarous Sugar

EXAMPLE 2: WEAKNESS ANALYSIS FOR BLACK BOX MODELS (1/2)


AUTOMATED RULE SEARCH FOR ERROR CONDITIONS

Challenges

- Black-box models complex and powerful, but predictions difficult or impossible to understand
- Huge search space for potential failure modes
- Reason for failure in individual cases difficult to explain or generalize

Approach

- Subgroup search finds rules for error cases with maximum "interestingness" (size and accuracy) regarding search criterion
- Prerequisite: meaningful metadata available or generatable

EXAMPLE 2: WEAKNESS ANALYSIS FOR BLACK BOX MODELS (2/2)

CONTENT ANALYSIS OF CUSTOMER REQUESTS

Use Case

Model classifies customer requests

Meta data

- Lots of customer data & data concerning claim / request
- Extensible (manually or automatically generated attributes)

Example

- Request not recognized as damage claim, if
 - Subject line is missing
 - Claim request < 10€</p>

StockPhotoPro - stock.adobe.com

KEY TAKE AWAYS

-0

П

Insurers need to get ready for upcoming regulation and new business opportunities in AI

Therefore a systematic evaluation of AI risks is required

Al risks are use case specific – so are countermeasures

AI quality assessments require new methods and tools

Image sources: Fraunhofer IAIS

EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 34

EAA e-Conference on Data Science & Data Ethics

29 June 2021

Contact

Dr. Maximilian Poretschkin

Fraunhofer Institute for Intelligent Analysis and Information Systems

+49 2241 14-1984

maximilian.poretschkin@iais.fraunhofer.de