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• Supervised learning = application of machine learning to datasets that 
contain features and outputs with the goal of predicting the outputs from 
the features (Friedman, Hastie and Tibshirani 2009).

• Feature engineering - Suppose we realize that Claims depends on Age^2 
=> enlarge feature space by adding Age^2 to data. Other options – add 
interactions/basis functions e.g. splines
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• In many domains, traditional approach to designing actuarial/machine 
learning systems relies on human input for model specification/ feature 
engineering.

• Three arguments against traditional approach:

Complexity – which are the relevant features to extract/what is the correct model specification? Difficult 
with very high dimensional, unstructured data such as images or text. (Bengio 2009; Goodfellow, Bengio 
and Courville 2016)

Expert knowledge – requires suitable prior knowledge, which can take decades to build (and might not 
be transferable to a new domain) (LeCun, Bengio and Hinton 2015)

Effort – designing features is time consuming/tedious => limits scope and applicability (Bengio, 
Courville and Vincent 2013; Goodfellow, Bengio and Courville 2016)

• Complexity is not only due to unstructured data. Many difficult problems 
of model specification arise when performing actuarial/demographic 
tasks at a large scale

5

THE NEED FOR HUMAN INTERVENTION
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REPRESENTATION LEARNING

• Representation Learning = ML techniques where algorithms automatically 
design features that are optimal (in some sense) for a particular task

• Traditional examples are PCA (unsupervised) and PLS (supervised):

PCA produces features that summarize directions of greatest variance in 
feature matrix

PLS produces features that maximize covariance with response variable 
(Stone and Brooks 1990)

• Feature space then comprised of learned features which can be fed into 
ML/DL model

• BUT: Simple/naive RL approaches often fail when applied to high 
dimensional/very complex data
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DEEP LEARNING

• Deep Learning = representation learning technique that automatically 
constructs hierarchies of complex features to represent abstract concepts

Features in lower layers composed of simpler features constructed at 
higher layers => complex concepts can be represented automatically 

• Typical example of deep learning is feed-forward neural networks, which 
are multi-layered machine learning models, where each layer learns a new 
representation of the features.

• The principle: Provide raw data to the network and let it figure out what 
and how to learn.
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EXAMPLE: FASHION-MNIST 

• Applied a deep autoencoder 
to the same data (trained in 
unsupervised manner)

Type of non-linear PCA

• Differences between classes 
shown

• Deep representation of data 
automatically captures 
meaningful differences 
between the images without 
(much) human input

• Automated feature/model 
specification
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Traditional 
Actuarial

Machine Learning

Deep 
Learning

SPECIFYING MODELS – A NOTATION

• Linear model specification, for fi identity (GLM), fi spline 
function (GAM)

• 𝛽𝑖 regression parameters
𝑀 𝑋; 𝑇; 𝛽𝑖𝑓𝑖(𝑥𝑖) ; Θ =  𝑦

• Implicit Specification of the model  𝐸 by a class of 
algorithms A𝑀 𝑋;𝑇; 𝑆 𝐴,  𝐸 ;Θ =  𝑦

• Representation Learning: Implicit Specification of 
functions  𝑇 to derive features X’

• Explicit use of loss function L(y,  𝑦) to measure predictive 
accuracy

𝑀 𝑋;  𝑇; 𝑆 𝐴,  𝐸 ; Θ =  𝑦

from Richman, von Rummell, & Wüthrich (2019)
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REPRESENTATION LEARNING

• When applied to tabular data, DL models perform representation learning 
on inputs:

- Interaction terms
- Non-linearities

• Paradigm of representation learning extends also to new types of data:

- High dimensional
- Unstructured

• Two recent examples – mortality forecasting + telematics

• But first, a detour: Convolutional Neural Networks
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CONVOLUTIONAL NN - IMAGES

• Prior - features in images are position 
invariant i.e. can recognize at any 
position within an image

• Also applies to audio/speech and 
text/time series data

• Convolutional network is locally 
connected and shares weights => 
expresses prior of position invariance

• Far fewer parameters than FCN

• Each neuron (i.e. feature map) in 
network derived by applying filter to 
input data 

• Weights of filter learned when fitting 
network
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LEE-CARTER MODEL

• Forecast mortality rates = key inputs into demographic forecasting, life 
insurance and pensions models

• Foundational model for mortality forecasting is the Lee-Carter model (Lee 
and Carter 1992) (LC model)

• Mortality over time modeled using:

• i.e. (log) mortality = average rate + rate of change . time index

• Relies on latent variables that must be estimated from data and then 
multiplied => use PCA to estimate the latent terms
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• Can we derive features for mortality forecasting directly from past mortality 
rates using DL?

• In the LC model, we have the following regression function:

• Rather, can we map directly from observed mortality rates of many 
populations to a time feature:

• Addressed in Perla, Richman, Scognamiglio and Wüthrich (2020)

PROCESSING TIME SERIES WITH DL
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LCCONV - MODEL STRUCTURE

Processing Layer

Country Gender

Feature Layer

Output Layer mx

...

...
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...
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...

...

Age: 0-99

Year: 1-10

• Similar to LC model…

• … however, time variable 
replaced with outputs of a NN 
processing layer

• Best performance achieved 
with no non-linearities in the 
model

• Since features are used 
immediately for prediction, can 
be interpreted as an extended 
LC model:

- First terms equivalent to ax
- Last term equivalent to bx.kt
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FORECAST RESULTS

• The CNN model (LCCONV) 
achieves better performance 
versus the LC model on 75/76 
populations in the HMD

• Unadjusted model also 
generalized well – beat LC on 
101/102 populations in the 
USMD

• LCCONV beats the LCNN model 
in an extra 8 populations and 
achieves a substantially lower 
out-of-sample MSE

• Residual plot shows that model 
is substantially better for 
males, whereas the 
performance is similar for 
females
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TELEMATICS ANALYSIS

• Non-life pricing often performed using GLMs

• Traditional covariates relate to policyholder, driver and vehicle 
characteristics

• Recently enhanced through deriving features from telematics data

• Features of telematics data:

- High dimensional 
- Sampled at high frequency
- Incorporate physical measurements (location, seed, acceleration)

• Simple approaches include considering number/rate of unwanted events 
(see Guillen, Nielsen, & Pérez-Marín (2021)) 

• Other approaches – summarize data in feature matrices for further analysis
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V-A HEATMAPS

• Velocity-Acceleration heatmaps due to Wüthrich (2017)

• Form 2S density plot of velocity and acceleration based on telematics data

• Can be analyzed using traditional methods e.g. k-means or PCA

• Recent work (Gao, Wang, & Wüthrich, 2021) analyzes heatmaps directly 
using FCN and CNN
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BOOSTING PRICING MODEL WITH 
TELEMATICS

• Combine traditional actuarial covariates with telematics data using boosting:

- First model – GLM using actuarial covariates
- Second model – once fit, add neural network component to improve calibrations

• Results show that adding covariates learned from heatmaps decreases test 
set error by ~10%:
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NEURAL NETWORK ARCHITECTURES

• Most state of the art deep learning results use specialized architectures:

- Convolutional neural networks
- Recurrent neural networks
- Embeddings

• Older ideas enhanced by modern approach to neural networks:

- More powerful computing (GPUs/TPUs)
- Larger datasets (ImageNet/NLP corpora)
- Advances in methodology: dropout, batchnorm, ReLu

• Led to state of the art advances on problems across many areas of 
machine learning:

- Computer vision
- Natural language processing
- Speech recognition
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ATTENTION IS ALL YOU NEED

• Newer approach proposed in 2017 relies on attention mechanisms

• One of most cited papers in machine learning (>23k):

• Proposed in context of machine translation 

• Extended to other NLP tasks, computer vision and more recently, tabular 
data
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ATTENTION

• Most actuarial models rely on fixed relationship between covariates 
(features) and outcomes; more flexible models (varying coefficient 
models) in statistical literature allow coefficients of models to vary with 
time (or other covariates)

• Generalized approach to allow for varying relationships between 
covariates and outcomes is attention (example from Xu et al., 2015)
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INTUITIONS OF SELF-ATTENTION

• When building models, relationships between covariates and outcomes 
may depend on context. 

Famous example in non-life insurance – young drivers and male drivers often have 
increased frequency, but young male drivers may experience even higher frequency => 
context allow for via interaction effect

• Automated method for building context into models: self-attention i.e. 
apply attention over inputs; sequence example (Cheng, Dong, & Lapata, 
2016)  
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TRANSFORMER

• Transformer models apply self-attention to augment model covariates 
depending on context (Vaswani et al., 2017):

1. Inputs fed to multiple self-attention components
2. Attention results added to original input and then centred/scaled
3. Then fed into feed forward network
4. Attention and feedforward results added and then centred/scaled 
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APPLYING TRANSFORMERS FOR ACTUARIAL 
MODELLING

• Transformer model recently applied in Kuo & Richman (2021) to model flood 
loss severity

• Model tries to predict damage ratio (proportion of exposure damaged) using 
several continuous and categorical covariates

• Best results achieved using Transformer based model
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EMBEDDING LAYER – CATEGORICAL DATA

• One hot encoding 
expresses the prior that 
categories are orthogonal 
=> similar observations 
not categorized into 
groups

• Embedding layer prior –
related categories should 
cluster together

• Learns dense vector 
transformation of sparse 
input vectors and clusters 
similar categories together

Actuary Accountant Quant Statistician Economist Underwriter

Actuary 1 0 0 0 0 0

Accountant 0 1 0 0 0 0

Quant 0 0 1 0 0 0

Statistician 0 0 0 1 0 0

Economist 0 0 0 0 1 0

Underwriter 0 0 0 0 0 1

Finance Math Stastistics Liabilities

Actuary 0.5 0.25 0.5 0.5

Accountant 0.5 0 0 0

Quant 0.75 0.25 0.25 0

Statistician 0 0.5 0.85 0

Economist 0.5 0.25 0.5 0

Underwriter 0 0.1 0.05 0.75
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CONTEXTUAL EMBEDDINGS

• Embeddings for categorical covariates + Self-attention for context = 
contextual embeddings

• Example shown for flood zone embeddings (left) colored according to house 
design variable (crawl space) 
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RANDOM TRAINING, RANDOM OUTCOMES

• Neural network training incorporates random processes

• Fundamental source of randomness: random initialization of starting 
parameters and not training to convergence (early stopping)

• Other sources: 

- random ordering of batches fed to network 
- dropout = randomly switch off parts of the network to regularize
- within vision models – random data augmentation

• Leads to robust models on the one hand…

• … and models that depend on the random seed (i.e. are not reproducible) 
on the other



EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 31

EXAMPLE

Neural networks fit to French MTPL dataset

Richman and Wüthrich (2020)
Neural networks fit to HMD dataset

Perla, Richman, Scognamiglio and Wüthrich (2020)



EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 32

NAGGING PREDICTORS

• Aggregating is a statistical technique that helps to reduce noise and 
uncertainty in predictors and is justified theoretically using the law of 
large numbers.

• An i.i.d. sequence of predictors is not always available thus, Breiman
(1996) combined bootstrapping and aggregating, called bagging.

• Combine networks and aggregating to receive the nagging predictor i.e. 
use multiple network predictors for aggregation (Richman & Wüthrich, 
2020)

• => Same situation as Breiman (1996) after having received the bootstrap 
samples

• Leads to more stable results and enhanced predictive performance.
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NAGGING RESULTS (1)

• Applied nagging to French MTPL data and fit 400 networks 
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NAGGING RESULTS (2)

• Shape of training losses versus 
testing losses => don’t underfit or 
overfit the training data

• Diagnostic for model convergence 
for individual observations = CoV of 
predictions

• Allows for identification of 
observations that are harder to fit

• Within French MTPL data, 
observations with vehicle age 0 
appear to have different properties

VehAge = 0 :  VehAge > 0 :  
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SOURCES OF RANDOMNESS

• How is stability of neural networks 
affected by different choices of 
architecture, regularization and 
training procedure?

• Investigated in Richman (2021) in 
context of mortality forecasting

• Following components tested:

- dimension of the intermediate layers
- dimension of the embedding and convolutional 

layers
- activation function of the intermediate layers
- application of batch normalization
- depth of the network
- drop-out rates
- size of batches
- learning rate, restarts and optimizer
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THE BIRDSEYE VIEW

• Plot shows relationship between randomness of outcomes and nagging 
predictor performance => some variability is good, but too little/too much 
is bad
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BIAS OF NETWORKS

• One view on non-life pricing = finding good base rate predictions for 
portfolio + set of relativities to allow pricing to vary with risk

• If using GLM => portfolio base rates reproduced by model i.e. the ‘balance 
property’ is preserved

• Neural networks and other ML algorithms do not have this property so 
must correct for this, see Wüthrich (2019) and Denuit, Charpentier, & 
Trufin (2021)

• Within life insurance, experience analysis assesses bias of predictions 
using AvE metrics (and only more rarely do we consider predictive 
accuracy)

• See Rossouw & Richman (2019) for discussion of bias regularization in a 
life reinsurance context
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EXPLAINING DEEP LEARNING MODELS

Increased exposure to model risk for ML/DL models and additional controls required

• Develop expert knowledge on model architecture and 
heuristics to assess models

• Issue pertains to some traditional models as well

Being able to comprehend the model 
as a whole

• Inspect learned representations in last layer of the model

• Manual intervention and inclusion of prior knowledge is 
more difficult

All components of the model can be 
inspected and make sense

• Many techniques to mitigate risks of instability and 
consistency of DLM still to be developed

• Ensembling many models and use of toy models to test 
outcomes of DLM 

Transparency of the learning algorithm 
and corresponding techniques

1: Lipton (2016) defines framework for model interpretability to assess two basic questions: Transparency or “How does the model work?” and Post-hoc Interpretability or “What else can the 
model tell me?”

Simulatability

Decomposability

Algorithmic 
Transparency
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COMBINED ACTUARIAL NEURAL NET (CANN) 

• Combine a traditional actuarial model 
together with a neural net (Wüthrich and 
Merz 2018). Implemented so far for 
pricing and reserving (Gabrielli 2019; 
Gabrielli, Richman and Wuthrich 2018)

- Traditional model (calibrated with MLE) directly 
connected with output of network using skip 
connection

- Model output then enhanced by model structure 
learned by neural net to explain residuals

- Easy to interpret (and fast to calibrate)

• Shifts the interpretability problem –
delta from GLM

• See Breeden and Leonova (2019) who 
use a similar proposal to incorporate 
prior economic information into a credit 
model 
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CANN FOR MORTALITY FORECASTING

• Here we show linear effects from the model and weight magnitude of non-
linear component

• Analysis in Richman (2021)
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INVESTIGATING NETWORK NON-
LINEARITIES

• Use the CANN model 
to highlight major 
differences from 
predictions of 
traditional model i.e. 
isolate the network 
output => model 
diagnostic

• Complex relationship 
between linear and 
non-linear 
component as 
function of Year, 
Country, Gender and 
Age variables



EAA e-Conference on Data Science & Data Ethics | 29 June 2021 | Page 43

CAXNN

• Hard to disentangle relationship between inputs and outputs in a deep 
learning model =>

• Can we use the flexibility/function approximation capability of neural 
networks to fit specific variable combinations?

• Explainable neural networks (XNNs) and Neural Additive Models (NAM) of 
Vaughan et al. (2018) and Agarwal et al. (2020)

• Combined Actuarial eXplainable Neural Network (CAXNN)

• See Richman (2021) for extensions of XNNs and applications within 
mortality forecasting
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CAXNN RESULTS

• CAXNN Model reproduces nagging predictor in an explainable manner
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CAXNN APPROXIMATION OUT-OF-SAMPLE

• CAXNN Model reproduces nagging predictor in an explainable manner
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UNCERTAINTY ESTIMATION

• Ability to quantify extent of uncertainty in predictions is key to many 
actuarial tasks; however, focus of deep learning literature is on best 
estimate

• Several approaches proposed in DL literature:

- Use of dropout as an approximation of model uncertainty (Gal 2016; Kendall and Gal 2017)
- Quantile regression to derive prediction bounds (Smyl 2018)
- Use neural networks for GAMLSS regression

• Not immediately obvious how to reconcile to traditional actuarial 
framework (often relies on bootstrapping) 

• Seemingly, framework of Kendall and Gal (2017) for computer vision 
correlates with traditional actuarial understanding (model and parameter 
risk = epistemic uncertainty; process risk = aleatoric uncertainty)
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RECENT WORK

• Gabrielli, Richman and Wüthrich (2019) apply bootstrap to the multi-LoB
ODP NN model – found that decreased bias almost to zero but increased 
RMSEP versus separate ODP models

- Bootstrap only feasible due to fast calibration of CANN models

• More recently, Schnürch & Korn (2021) apply bootstrapping to neural 
network-based mortality forecasting models and find intervals thus 
produced are well calibrated for some of the models

• Also see Marino & Levantesi (2020)
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TWO SIMPLE ML METHODS

• In Richman (2021) we have applied methods from the ML/DL literature

• Quantile regression (using pinball loss) shown to produce very well 
calibrated prediction intervals in M4 Forecasting competition

• Deep ensembles use heteroskedastic Gaussian regression and multiple 
training runs to derive prediction intervals (Lakshminarayanan et al.
2017):

• Note that DE have Bayesian interpretation (Wilson & Izmailov, 2020) 
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TWO SIMPLE ML METHODS

• Achieve excellent empirical coverage out of sample i.e. well calibrated

• Perhaps too narrow due to parameter error that was not evaluated
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QUANTILE REGRESSION – INTUITIVE 
RESULTS

• Results accord with intuition
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WHAT DID WE NOT COVER?

• Outside of actuarial science:

• Applying transformers for computer vision (Dosovitskiy et al. 2020)

• The “self-supervised revolution” (LeCun & Misra, 2021)

• DL versus GBDT (Kadra et al. 2021)

• Within actuarial science:

• Last layer analysis (Richman, von Rummell, & Wüthrich, 2019)

• Marginal attribution by condition on quantiles (Merz, Richman, 
Tsanakas, & Wüthrich, 2021)

• Discrimination free pricing (Lindholm, Richman, Tsanakas, & Wüthrich, 
2020)
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CONLCUSIONS

• Deep learning:

- opens new possibilities for actuarial modelling by solving difficult model specification 
problems, especially those involving large scale modelling problems

- allows new types of high frequency data to be analysed

- enhances the predictive power of models built by actuaries

• Recent work has expanded the toolkit of actuarial data science by:

- applying representation learning directly on novel data sources

- applying new DL methods

- showing how DL models can be made explainable/interpretable

• More work is needed on uncertainty estimation
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LEARN MORE

• Reading club to go through new book by Mario Wüthrich and Michael Merz
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3822407

• Contact me if this is of interest

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3822407
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THANK YOU

• Mario Wüthrich
• Andreas Tsanakas
• Michael Merz
• Mathias Lindholm
• Kevin Kuo
• Nicolai von Rummell
• Louis Rossouw
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