ulm university universität **UUUM**

Analytical and simulation-based approaches for quantifying multi-year risk in non-life insurance

Marc Linde | University of Ulm | October 01, 2019

Analytical and simulation-based approaches for quantifying multiyear risk in non-life insurance

Content	 Summary of our research and publications from 2013 – 2019 Definition of Non-Life Insurance Risk in a multi-year view Quantification of multi-year risk in (extended) univariate reserving models (ILR, CL models) Quantification of multi-year risk in (extended) multivariate reserving models with particular focus on simulation-based approaches ("Stochastic Re-Reserving")
Relevant for	 Practitioners in P&C Insurance companies Risk Management Actuarial Function Capital Management Researchers in the field of stochastic reserving and stochastic modelling of non-life insurance risks
	Multi-vear projections of Non-Life Underwriting Risks within the ORSA
Application Fields	 Assessment of Reserve uncertainty in a multi-year view Suitability assessment for standard formula assumptions and parameters Empirical estimation of correlation parameters Justification of Undertaking Specific Parameters (USPs)

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Multi-Year Non-Life Insurance Risk - Background

- Non-Life Insurance Risk is typically composed of Reserve Risk and Premium Risk
 - Reserve Risk relates to claims that have already occurred in the past
 - **Premium Risk** relates to claims that will occur in the future
- Reserve Risk and Premium Risk have been typically modelled in an ultimo view
 - i.e. uncertainty about future claims occurrence and development is quantified up to final settlement
- Within the regulatory framework of Solvency II a one-year view has been introduced

i.e. uncertainty about future claims occurrence and development needs to be quantified for one future calendar year

 For strategic decision making a multi-year horizon is required In the context of Solvency II, insurance companies are also prescribed to perform an *Own Risk and Solvency Assessment* (ORSA) as part of the risk management

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Framework for multi-year non-life insurance risk (1/7)

Quantification of risk under Solvency II (i.e. calculation of the one-year SCR) is based on an economic balance sheet approach, which can be extended from a one-year perspective to an arbitrary time horizon of *m* future calendar years:

- Liabilities for Non-Life Insurance companies mainly consist of technical provisions which have to split into *outstanding claims provisions* and *premium provision (*for simplification reasons the latter one will be ignored in the following).
- The market value of technical provisions has to be calculated as best-estimate plus a risk margin, where the best estimate is derived from all relevant future cash-flows (premiums, expenses and claims payments).

Framework for multi-year non-life insurance risk (2/7)

- The claims triangle $\mathcal{D}_n \coloneqq \{S_{i,k}\}_{i+k \le n+1}$ contains the observed claims payments up to T = n
- The payments $\{S_{i,k}\}_{n+1 \le i+k}$ represent future payments which are unknown at T = n thus we define:
 - $R_i^{(n)} \coloneqq \sum_{k=n-i+2}^{\omega} S_{i,k} \stackrel{\text{def}}{=} \text{Cumulated future payments for claims of a single accident year } 1 \le i \le n+m$
 - $U_i \coloneqq C_{i,n-i+1} + R_i^{(n)} \stackrel{\text{def}}{=} Ultimate claim amount for a single accident year <math>1 \le i \le n+m$
 - $R_{PY}^{(n)} \coloneqq \sum_{i=1}^{n} R_i^{(n)}$ $\stackrel{\text{def}}{=}$ Cumulated future payments for (outstanding) claims of prior accident years $\{1, ..., n\}$
 - $R^{(n)} \coloneqq \sum_{i=1}^{n+m} R_i^{(n)}$ $\stackrel{\text{def}}{=}$ Cumulated future payments for claims of all accident years $\{1, ..., n+m\}$

Framework for multi-year non-life insurance risk (3/7)

Application of an *actuarial reserving method* \mathcal{T}_n (e.g. generalized chain-ladder methods, additive loss reserving method,...) yields *estimators* $\hat{S}_{i,k}^{(n)} \coloneqq \widehat{\mathbb{E}}[S_{i,k}|\mathcal{D}_n]$ for the *expected future payments* $\{\mathbb{E}[S_{i,k}|\mathcal{D}_n]\}_{n+1 < i+k}$ as at T = n - thus we define:

- $\hat{R}_i^{(n)} \coloneqq \sum_{k=n-i+2}^{\omega} \hat{S}_{i,k}^{(n)} \stackrel{\text{\tiny def}}{=} Best-estimate$ of cumulated future claims payments for a single accident year $1 \le i \le n+m$
- $\hat{U}_i^{(n)} \coloneqq C_{i,n-i+1} + \hat{R}_i^{(n)} \triangleq$ Best-estimate of the ultimate claim amount for a single accident year $1 \le i \le n + m$
- $\hat{R}_{PY}^{(n)} \coloneqq \sum_{i=1}^{n} \hat{R}_{i}^{(n)}$ $\stackrel{\text{def}}{=}$ Best-estimate reserve for outstanding claims of prior accident years $\{1, ..., n\}$
- $\hat{R}^{(n)} \coloneqq \sum_{i=1}^{n+m} \hat{R}_i^{(n)} \triangleq$ Best-estimate of cumulated future claims payments for all prior and future accident years

Framework for multi-year non-life insurance risk (4/7)

Application of *actuarial reserving method* \mathcal{T}_{n+m} yields *estimators* $\hat{S}_{i,k}^{(n+m)} \coloneqq \widehat{\mathbb{E}}[S_{i,k} | \mathcal{D}_{n+m}]$ for the *expected future payments* $\{\mathbb{E}[S_{i,k} | \mathcal{D}_{n+m}]\}_{n+m+1 \le i+k}$ as at T = n + m:

- $\hat{R}_{i}^{(n+m)} \coloneqq \sum_{k=n-i+m+2}^{\omega} \hat{S}_{i,k}^{(n+m)} \stackrel{\text{def}}{=} Best-estimate of cumulated future claims payments for a single accident year i$
- $\hat{U}_i^{(n+m)} \coloneqq C_{i,n-i+m+1} + \hat{R}_i^{(n+m)} \stackrel{\text{def}}{=} Best-estimate of the ultimate claim amount for a single accident year <math>1 \le i \le n+m$
- $\hat{R}_{PY}^{(n+m)} \coloneqq \sum_{i=1}^{n} \hat{R}_{i}^{(n+m)} \stackrel{\text{def}}{=} Best-estimate reserve for outstanding claims of prior accident years <math>\{1, ..., n\}$
- $\hat{R}^{(n+m)} \coloneqq \sum_{i=1}^{n+m} \hat{R}_i^{(n+m)}$ $\stackrel{\text{def}}{=}$ Best-estimate of cumulated future claims payments for all prior and future accident years

Framework for multi-year non-life insurance risk (5/7)

(Initial) Valuation as per T = n

(Re-)Valuation as per T = n + m

Multi-year claims development result for single accident year *i*

 $\widehat{\text{CDR}}_i^{(n \to n+m)} \coloneqq \widehat{U}_i^{(n)} - \widehat{U}_i^{(n+m)}$

Framework for multi-year non-life insurance risk (6/7)

Reserve Risk – Claims from prior accident years $\{1, ..., n\}$

$$\widehat{\text{CDR}}_{PY}^{(n \to n+m)} \coloneqq \sum_{i=1}^{n} \widehat{\text{CDR}}_{i}^{(n \to n+m)}$$

 $\widehat{\text{CDR}}_{PY}^{(n \to n+m)} < 0 \ (> 0)$ is equal to a cumulated economic loss (economic profit) over the next *m* calendar years, hence leads to a reduction / an increase of the basic own funds leaving all other equal.

Premium Risk – Claims from future accident years $\{n + 1, ..., n + m\}$

$$\widehat{\mathrm{CDR}}_{NY}^{(n \to n+m)} \coloneqq \sum_{i=n+1}^{n+m} \widehat{\mathrm{CDR}}_{i}^{(n \to n+m)}$$

The cumulated estimated *m*-year underwriting result $\sum_{i=n+1}^{n+m} \widehat{UW}_i^{(n+m)}$ for accident years n + 1, ..., n + m can be expressed in terms of the claims development result for future accident years $\widehat{CDR}_{NY}^{(n \to n+m)}$:

$$\sum_{i=n+1}^{n+m} \widehat{\mathrm{UW}}_i^{(n+m)} = \sum_{i=n+1}^{n+m} P_i - E_i - \widehat{U}_i^{(n+m)} = \widehat{\mathrm{CDR}}_{NY}^{(n\to n+m)} + \left(\sum_{i=n+1}^{n+m} \widehat{\mathrm{UW}}_i^{(n)}\right)$$

Hereby P_i denotes the *future earned premium* for accident year $n + 1 \le i \le n + m$, E_i the corresponding *expenses*. Hence $\sum_{i=n+1}^{n+m} \widehat{UW}_i^{(n+m)} < 0$ (> 0) means a cumulated economic loss (economic profit) over the next *m* years.

Framework for multi-year non-life insurance risk (7/7)

Non-Life Insurance Risk – claims from prior and future accident years

$$\widehat{\text{CDR}}^{(n \to n+m)} \coloneqq \widehat{\text{CDR}}_{PY}^{(n \to n+m)} + \widehat{\text{CDR}}_{NY}^{(n \to n+m)}$$

$$\sum_{i=n+1}^{n+m} \widehat{\mathrm{UW}}_i^{(n+m)} + \widehat{\mathrm{CDR}}_{PY}^{(n\to n+m)} = \sum_{i=n+1}^{n+m} \widehat{\mathrm{UW}}_i^{(n)} + \widehat{\mathrm{CDR}}^{(n\to n+m)},$$

- We have seen that the *m*-year reserve risk, *m*-year premium risk and hence *m*-year nonlife insurance risk can be expressed in terms of volatility of the claims development result over the next *m* calendar years.
- In general, different (and separate) models for Premium Risk and Reserve Risk are applied, explicit correlation assumptions necessary to combine both risks.
- Next milestone: Define integrated modelling framework!

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Quantification of Non-Life Insurance Risk – General Overview

Analytical Approaches

Leads to a full predictive distribution (provides also

More time-consuming, subject to simulation error

Applicable to most common reserving models

higher moments and risk measures like VaR and TVaR)

Bootstrap Approaches

- Estimators for mean squared error of prediction
- Only provides moments up to 2nd order (= standard deviation of the predictive distribution)
- Closed-form analytical formulae
- Fast computation
- Available for most common reserving models
- one-year and ultimo view

Closed-form estimators for the mean squared error of prediction (msep) for $\widehat{\text{CDR}}^{(n \to n+m)}$ in distribution-free stochastic reserving models

Stochastic m-year re-reserving ("actuary in a box"): to estimate full predictive distribution of $\widehat{\text{CDR}}^{(n \to n+m)}$ generalizing the one-year bootstrap by Ohlsson and Lauzeningks (2009)

Resampling, simulation-based

Quantification of Non-Life Insurance Risk - univariate reserving models

- The reserving methods used for best-estimate prediction determine the stochastic model.
- Focus on two of the most common reserving methods:
 - Chain-Ladder method (CL) ⇒ Mack chain-ladder model
 - Incremental Loss Ratio method (ILR) ⇒ Additive loss reserving model
- Estimate parameters:
 - CL: Chain-ladder factors, Mack volatility parameters
 - ILR: Incremental loss ratios, volatility parameters
- Extend the current models to allow for future accident years (Premium Risk) as well: for the chain ladder model, we introduce a volume model for the first development year.

Model Definition

Results for univariate reserving models – (Extended) Chain Ladder Model

•
$$\mathbb{E}[F_{i,k}|C_{i,0},\ldots,C_{i,k-1}] = f_k$$

•
$$\mathbb{V}[F_{i,k}|C_{i,0}, \dots, C_{i,k-1}] = \sigma_k^2/C_{i,k-1}$$

(Initial) Valuation as per T = n

• $\hat{f}_k^{(n)} = \sum_{i=1}^{n-k+1} C_{i,k} / \sum_{i=1}^{n-k+1} C_{i,k-1}$

•
$$\widehat{U}_i^{(n)} = C_{i,n-i+1} \cdot \left(\prod_{k=n-i+2}^n \widehat{f}_k^{(n)}\right)$$

Results for univariate reserving models – (Extended) Chain Ladder Model

(Initial) Valuation as per T = n

- $\hat{f}_{k}^{(n)} = \sum_{i=1}^{n-k+1} C_{i,k} / \sum_{i=1}^{n-k+1} C_{i,k-1}$
- $\widehat{U}_i^{(n)} = C_{i,n-i+1} \cdot \left(\prod_{k=n-i+2}^n \widehat{f}_k^{(n)}\right)$

(Re-)Valuation as per T = n + m

• $\hat{f}_k^{(n+m)} = \sum_{i=1}^{n-k+m+1} C_{i,k} / \sum_{i=1}^{n-k+m+1} C_{i,k-1}$ • $\hat{U}_i^{(n+m)} = C_{i,n-i+m+1} \cdot \left(\prod_{k=n-i+m+2}^n \hat{f}_k^{(n)}\right)$

Results for univariate reserving models – (Extended) Chain Ladder Model

The **mean squared errors of prediction** for the various multi-year claims development results can be written in a **closed analytical form** (see [Diers, Hahn and Linde 2016]) - formulas were derived by means of a First-Order Taylor approximation.

$$\begin{aligned} \int c_{i,k-1} &= \int c_{i,k-1} - c_{i,k-1} \\ f_{i,k-1} &= \int c_{i,k-1} - c_{i,k-1} - c_{i,k-1} \\ f_{i,k-1} &= \int c_{i,k-1} - c_{i,k-1} -$$

Model Definition

Results for univariate reserving models – (Extended) Additive Model

k n historical accident years т $M_{i,k} = \frac{S_{i,k}}{1}$ future accident years

(Initial) Valuation as per T = n

Additive reserving model

- Independence of incremental payments
- $\mathbb{E}[M_{i,k}] = m_k$

•
$$\mathbb{V}[M_{i,k}] = s_k^2/v$$

Results for univariate reserving models – (Extended) Additive Model

(Initial) Valuation as per T = n

- $\widehat{m}_{k}^{(n)} \coloneqq \sum_{i=1}^{n-k+1} S_{i,k} / \sum_{i=1}^{n-k+1} v_{i}$
- $\widehat{R}_i^{(n)} = v_i \cdot \left(\sum_{k=n-i+2}^n \widehat{m}_k^{(n)}\right)$

(Re-)Valuation as per T = n + m

Results for univariate reserving models – (Extended) Additive Model

Also for the additive reserving model, the **mean squared errors of prediction** for the multi-year claims development results can be written in a **closed analytical form** (see [Diers and Linde 2013]):

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Multi-year claims development result for multiple portfolios

- Application of actuarial reserving methods for best estimate valuation needs to be performed on the level of homogeneous risk groups (at least SII Minimum lines of business)
- Segmentation into several lines of business and further division into portfolios
- Dependencies between portfolios become obvious in the aggregation process to the aggregated claims development result on company level.

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (1/7)

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (2/7)

- The original Braun model is also known as bivariate chain ladder model and provides an extension of the classical chain ladder type-models to the case of two portfolios allowing for dependencies in their claims development processes.
- Braun introduces a correlation between single development factors of different portfolios at the same stage of development
- As single development factors are correlated according to the assumptions of the Braun model, also chain ladder factors (estimated as per T = n und T = n + m) are correlated.
- Thus, also Claims Development Results ${}^{C}\widehat{\text{CDR}}^{(n \to n+m)}$ and ${}^{D}\widehat{\text{CDR}}^{(n \to n+m)}$ are correlated, hence in general the mean squared error of predictions (msep) per single portfolio can not be simply summed up to the msep on aggregated level.

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (3/7)

 $\widehat{\mathrm{msep}}_{C+D}_{\widehat{\mathrm{CDR}}_{i}^{(n\to n+m)}|Data}(0) = \widehat{\mathrm{msep}}_{C\widehat{\mathrm{CDR}}_{i}^{(n\to n+m)}|Data}(0) + \widehat{\mathrm{msep}}_{D\widehat{\mathrm{CDR}}_{i}^{(n\to n+m)}|Data}(0) + 2 \cdot \widehat{\mathrm{Cov}} \left[\left[{}^{C}\widehat{\mathrm{CDR}}_{i}^{(n\to n+m)}, {}^{D}\widehat{\mathrm{CDR}}_{i}^{(n\to n+m)} \right] \right] Data = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$

The prediction covariance $\widehat{\text{Cov}}\left[{}^{C}\widehat{\text{CDR}}_{i}^{(n \to n+m)}, {}^{D}\widehat{\text{CDR}}_{i}^{(n \to n+m)} \mid \text{Data} \right]$ will be further divided into a process error and an estimation error component

$$\widehat{Cov}\left[\widehat{COR}_{i}^{(n \to n+m)}, \widehat{DCDR}_{i}^{(n \to n+m)} \mid Data\right] = \operatorname{process}\widehat{Cov}\left[\widehat{COR}_{i}^{(n \to n+m)}, \widehat{DCDR}_{i}^{(n \to n+m)} \mid Data\right] + \operatorname{estimation}\widehat{Cov}\left[\widehat{COR}_{i}^{(n \to n+m)}, \widehat{DCDR}_{i}^{(n \to n+m)} \mid Data\right]$$

$$process \widehat{Cov} \left[{}^{C} \widehat{CDR}_{i}^{(n \to n+m)}, {}^{D} \widehat{CDR}_{i}^{(n \to n+m)} \mid Data \right] = \sum_{k=n-i+2}^{n-i+m+1} \left[\hat{c}_{i,k-1} \cdot \hat{\sigma}_{k}^{2} \right]^{1/2} \cdot \left[\widehat{D}_{i,k-1} \cdot \hat{t}_{k}^{2} \right]^{1/2} \cdot \hat{\psi}_{k} + \sum_{k=n-i+m+2}^{n} \left[\frac{\hat{C}_{i,k-1}^{2}}{\left(\hat{C}_{i,k-1}^{(n+m)} \right)^{2}} \cdot \left(\sum_{t=1}^{m} \hat{c}_{n-k+t+1,k-1} \right) \cdot \hat{\sigma}_{k}^{2} \right]^{1/2} \cdot \left[\frac{\hat{D}_{i,k-1}^{2}}{\left(\hat{D}_{i,k-1}^{(n+m)} \right)^{2}} \cdot \left(\sum_{t=1}^{m} \hat{D}_{n-k+t+1,k-1} \right) \cdot \hat{\tau}_{k}^{2} \right]^{1/2} \times \hat{\psi}_{k} \cdot \frac{\left(\sum_{t=1}^{m} \sqrt{\hat{c}_{n-k+1+t,k-1}} \cdot \widehat{D}_{n-k+1+t,k-1} \right)}{\sqrt{\left(\sum_{t=1}^{m} \hat{C}_{n-k+1+t,k-1} \right)} \cdot \hat{\tau}_{k}^{2} \right]^{1/2} \cdot \left[\frac{\hat{D}_{i,k-1}^{2}}{\left(\hat{D}_{i,k-1}^{(n+m)} \right)^{2}} \cdot \left(\sum_{t=1}^{m} \widehat{D}_{n-k+t+1,k-1} \right) \cdot \hat{\tau}_{k}^{2} \right]^{1/2} \times \hat{\psi}_{k} \cdot \frac{\left(\sum_{t=1}^{m} \sqrt{\hat{c}_{n-k+1+t,k-1}} \cdot \widehat{D}_{n-k+1+t,k-1} \right)}{\sqrt{\left(\sum_{t=1}^{m} \hat{D}_{n-k+1+t,k-1} \right)}} \right]^{1/2} \cdot \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} + \hat{\tau}_{k}^{2} \cdot \hat{\tau}_{k}^{2} + \hat{\tau}$$

$$\underset{k=n-i+m+2}{\text{estimation}} \widehat{Cov} \left[{}^{C} \widehat{\text{CDR}}_{i}^{(n \to n+m)}, {}^{D} \widehat{\text{CDR}}_{i}^{(n \to n+m)} + Data \right] = \sum_{k=n-i+2}^{n-i+m+1} \left[\frac{\left(\hat{c}_{i,k-1}\right)^{2}}{\hat{c}_{<,k-1}^{(n)}} \cdot \hat{\sigma}_{k}^{2} \right]^{1/2} \cdot \left[\frac{\left(\hat{D}_{i,k-1}\right)^{2}}{\hat{D}_{<,k-1}^{(n)}} \cdot \hat{\tau}_{k}^{2} \right]^{1/2} \cdot \hat{\psi}_{k} \cdot \frac{\left(\sum_{j=1}^{n+1-k} \sqrt{\hat{c}_{j,k-1}} \cdot \hat{D}_{j,k-1}\right)}{\sqrt{\hat{c}_{<,k-1}^{(n)}}} + \sum_{k=n-i+m+2}^{n} \left[\frac{\hat{c}_{i,k-1}^{2}}{\left(\hat{c}_{i,k-1}^{(n+m)}\right)^{2} \cdot \hat{c}_{k}^{2}} \right]^{1/2} \cdot \left[\frac{\hat{D}_{i,k-1}^{2}}{\left(\hat{D}_{<,k-1}^{(n+m)}\right)^{2} \cdot \hat{c}_{k}^{2}} \right]^{1/2} \cdot \left[\frac{\hat{D}_{i,k-1}^{2}}{\left(\hat{D}_{<,k-1}^{(n+m)}\right)^{2} \cdot \hat{c}_{k}^{2}} \right]^{1/2} \times \hat{\psi}_{k} \cdot \frac{\left(\sum_{j=1}^{n+1-k} \sqrt{\hat{c}_{j,k-1}} \cdot \hat{D}_{j,k-1}\right)}{\sqrt{\hat{c}_{i,k-1}^{(n)} \cdot \hat{D}_{<,k-1}^{(n)}}} + \sum_{k=n-i+m+2}^{n} \left[\frac{\hat{c}_{i,k-1}^{2}}{\left(\hat{c}_{i,k-1}^{(n+m)}\right)^{2} \cdot \hat{c}_{k}^{2}} \right]^{1/2} \cdot \left[\frac{\hat{D}_{i,k-1}^{2}}{\left(\hat{D}_{<,k-1}^{(n+m)}\right)^{2} \cdot \hat{D}_{<,k-1}^{(n)}}} \cdot \left(\sum_{t=1}^{m} \hat{D}_{n-k+1+t,k-1}\right)^{2} \cdot \hat{\tau}_{k}^{2} \right]^{1/2} \times \hat{\psi}_{k} \cdot \frac{\left(\sum_{j=1}^{n+1-k} \sqrt{\hat{c}_{j,k-1}} \cdot \hat{D}_{j,k-1}\right)}{\sqrt{\hat{c}_{<,k-1}^{(n)} \cdot \hat{D}_{<,k-1}^{(n)}}} + \sum_{k=n-i+m+2}^{n} \left[\frac{\hat{c}_{i,k-1}^{2} \cdot \hat{c}_{i,k-1}^{2}}{\left(\hat{D}_{i,k-1}^{2} \cdot \hat{D}_{i,k-1}^{2}\right)^{2} \cdot \hat{D}_{i,k-1}^{2}} \cdot \hat{D}_{i,k-1}^{2}} \cdot \hat{D}_{i,k-1}^{2}} \right]^{1/2} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2}} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2}} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2}} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^{2}} \cdot \hat{U}_{i,k-1}^{2} \cdot \hat{U}_{i,k-1}^$$

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (4/7)

General Third Party Liability (GTPL)

iangle Data: Cumulative Claims Payments Ci,k

Accident year	Volume
1	510.301
2	632.897
3	658.133
4	723.456
5	709.312
6	845.673
7	904.378
8	1.156.778
9	1.214.569
10	1.397.123
11	1.832.676
12	2.156.781
13	2.559.345
14	2.456.991
15	2.616.438
16	2.775.885
17	2.935.332
18	3.094.779
19	3.254.226

Volume Measures ^Cv_i

1	2	3	4	5	6	7	8	9	10	11	12	13	
59.966	163.152	254.512	349.524	433.265	475.778	513.660	520.309	527.978	539.039	537.301	540.873	547.696	5
49.685	153.344	272.936	383.349	458.791	503.358	532.615	551.437	555.792	556.671	560.844	563.571	562.795	
51.914	170.048	319.204	425.029	503.999	544.769	559.475	577.425	588.342	590.985	601.296	602.710		-
84.937	273.183	407.318	547.288	621.738	687.139	736.304	757.440	758.036	782.084	784.632			
98.921	278.329	448.530	561.691	641.332	721.696	742.110	752.434	768.638	768.373				
71.708	245.587	416.882	560.958	654.652	726.813	768.358	793.603	811.100					
92.350	285.507	466.214	620.030	741.226	827.979	873.526	896.728						
95.731	313.144	553.702	755.978	857.859	962.825	1.022.241		•					
97.518	343.218	575.441	769.017	934.103	1.019.303		-						timato
173.686	459.416	722.336	955.335	1.141.750									/CL Es
139.821	436.958	809.926	1.174.196		-								Faction
154.965	528.080	1.032.684		-									pment
196.124	772.971												Devealo
204.325													lize of I

Motor Third Party Liability (MTPL)

Volumen	Volume medadules V							
Accident year	Volume							
1	413.213							
2	537.988							
3	589.145							
4	523.419							
5	501.498							
6	598.345							
7	608.376							
8	698.993							
9	704.129							
10	903.557							
11	947.326							
12	1.134.129							
13	1.538.916							
14	1.487.234							
15	1.564.735							
16	1.642.236							
17	1.719.737							
18	1.797.238							
19	1.874.739							

ata: Cumulative Claims Payments Dik

1	2	3	4	5	6	7	8	9	10	11	12	13	
114.423	247.961	312.982	344.340	371.479	371.102	380.991	385.468	385.152	392.260	391.225	391.328	391.537	T
152.296	305.175	376.613	418.299	440.308	465.623	473.584	478.427	478.314	479.907	480.755	485.138	483.974	Г
144.325	307.244	413.609	464.041	519.265	527.216	535.450	536.859	538.920	539.589	539.765	540.742		-
145.904	307.636	387.094	433.736	463.120	478.931	482.529	488.056	485.572	486.034	485.016			
170.333	341.501	434.102	470.329	482.201	500.961	504.141	507.679	508.627	507.752				
189.643	361.123	446.857	508.083	526.562	540.118	547.641	549.605	549.693					
179.022	396.224	497.304	553.487	581.849	611.640	622.884	635.452						
205.908	416.047	520.444	565.721	600.609	630.802	648.365		•					
210.951	426.429	525.047	587.893	640.328	663.152		•						
213.426	509.222	649.433	731.692	790.901		•							
249.508	580.010	722.136	844.159		•								
258.425	686.012	915.109		•									
368.762	909.066		-										
394 997		-											

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (5/7) Bivariate chain-ladder

Analytical results for Multi-Year Reserve Risk:

- standard errors for the multi-year claims development result of all prior accident years per portfolio
- corresponding standard errors on aggregated level
- as well as the implied correlation between both portfolios

Number of future calendar years m	m-year Reserve Risk - GTPL -	m-year Reserve Risk - MTPL -	m-year Reserve Risk - GTPL + MTPL -	m-year Reserve Risk Corr GTPL <> MTPL
1	330.991	134.242	394.733	31,78%
2	387.867	147.534	460.477	34,80%
3	405.193	154.906	482.890	35,85%
4	413.613	159.099	493.678	35,96%
5	418.363	160.847	499.289	35,96%
6	421.655	161.601	502.868	35,93%
7	423.718	162.099	505.112	35,91%
8	425.297	162.442	506.863	35,93%
9	426.342	162.690	508.023	35,94%
10	426.811	162.790	508.544	35,94%
11	427.103	162.858	508.873	35,95%
12	427.281	162.870	509.068	35,96%
13	427.289	162.872	509.075	35,96%

Ā

0

- Figures from [Braun 2004] for the ultimo view on univariate level are reproduced
- Implied correlation is time-dependent
- Results for future one-year risks can be found in [Linde 2016]

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (6/7)

Analytical results for Multi-Year Premium Risk:

- standard errors for the multi-year claims development result of all future accident years per portfolio
- corresponding standard errors on <u>aggregated level</u>
- as well as the implied correlation between both portfolios

Number of future calendar years m	m-	year Premium Risk - GTPL -	m-year Premium Risk - MTPL -	m-year Premium Risk - GTPL + MTPL -	m-year Premium Risk Corr GTPL <> MTPL
1		430.569	136.098	494.962	35,05%
2		717.025	248.232	831.229	32,36%
3		993.278	345.141	1.151.568	32,14%
4		1.263.978	438.589	1.465.533	32,27%
5		1.536.805	532.343	1.781.802	32,37%
6		1.574.308	551.354	1.828.137	32,24%
7		1.587.933	554.764	1.844.167	32,45%
8		1.591.707	556.750	1.849.390	32,54%
9		1.593.471	557.934	1.851.856	32,56%
10		1.594.513	558.459	1.853.176	32,56%
11		1.595.324	558.668	1.854.085	32,56%
12		1.595.792	558.827	1.854.613	32,56%
13		1.596.236	558.934	1.855.123	32,57%
14		1.596.561	559.018	1.855.493	32,57%
15		1.596.704	559.049	1.855.655	32,57%
16		1.596.782	559.072	1.855.746	32,57%
17		1.596.846	559.076	1.855.817	32,57%
18		1.596.849	559.076	1.855.820	32,57%

Multi-year non-life insurance risk in the multivariate Chain Ladder Model – Model framework and results (7/7)

Analytical results for Multi-Year Non-Life Insurance Risk:

- standard errors for the multi-year claims development result of all prior and future accident years per portfolio
- corresponding standard errors on <u>aggregated level</u>
- as well as the implied correlation between both portfolios

	Ľ	Ľ.	Ľ)	
Number of future	m-year Insurance Risk	m-year Insurance Risk	m-year Insurance Risk	m-year Insurance Risk
Calenual years III	- GIFL-	- IVI I FL -	- GIFL + WIIFL-	CON GIFL > WIFL
1	572.038	203.925	668.009	33,19%
2	869.441	309.622	1.015.045	33,16%
3	1.142.263	405.284	1.332.398	33,08%
4	1.410.245	498.100	1.643.415	33,02%
5	1.681.102	590.792	1.957.102	32,98%
6	1.717.591	608.485	2.001.734	32,85%
7	1.731.425	611.911	2.017.860	33,01%
8	1.735.911	613.942	2.023.788	33,09%
9	1.738.208	615.182	2.026.806	33,11%
10	1.739.467	615.726	2.028.356	33,12%
11	1.740.401	615.961	2.029.404	33,12%
12	1.740.947	616.113	2.030.015	33,12%
13	1.741.359	616.211	2.030.486	33,12%
14	1.741.657	616.287	2.030.824	33,12%
15	1.741.787	616.315	2.030.972	33,12%
16	1.741.859	616.336	2.031.056	33,13%
17	1.741.918	616.340	2.031.120	33,13%
18	1.741.920	616.340	2.031.123	33,13%

티티

নি

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (1/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (2/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (3/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (4/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (5/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (6/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (7/8)

Quantification of multi-year non-life insurance risk for dependent portfolios with Bootstrap approach (8/8)

Bootstrap approach allows to

- estimate multi-year overall solvency needs,
- derive future one-year capital requirements (rolling forward definition of reserve and premium risks),
- calculate risk margins and safety loadings,
- perform sensitivity analyses.

Agenda

Background

Definition of Non-Life Insurance Risk in a multi-year view

Quantification of multi-year Non-Life Insurance Risk in univariate reserving models

Quantification of multi-year Non-Life Insurance Risk in multivariate reserving models

Summary and Application Fields

Summary and Application Fields (1/2)

Definition of multi-year claims development result: Diers et al. (2013)

Analytical approaches

- Based on distribution-free claims reserving models (additive reserving model and chain-ladder model) extended for future business
- closed-form estimators for mean squared error of prediction
 - Univariate models: Diers and Linde (2013), Diers et al. (2016)
 - Building the bridge between Mack (1993) and Merz and Wüthrich (2008) for chain-ladder model
 - Multivariate models: Linde (2016), Hahn (2017)

Simulation-based approaches

- Bootstrap and stochastic re-reserving ("actuary in the box")
- risk measures derived from full predictive distribution of the multi-year claims development result
 - Univariate models: Diers et al. (2013)
 - Generalization of England and Verrall (2006) and Ohlsson and Lauzeningks (2009)
 - Multivariate models: Hahn and Linde (2019)

Summary and Application Fields (2/2)

Practical Value of Bootstrap Approach

- The bootstrap approach allows to quantify premium and reserve risk
 - among lines of business (or more granular segments)
 - through various risk measures,
 - over a time horizon of multiple future accounting years.
- input for overall solvency needs in the ORSA process
- understanding of how dependencies between the occurrence and settlement of claims among different loss portfolios influence the aggregated risk capital
- suitability assessment of the standard formula
- indicator for possible benefits from undertakingspecific parameters
- derivation of risk capitals in future one-year view to compute a risk margin under a run-off scenario

Outlook on R Implementation

- chain-ladder and additive loss reserving models subject to development year correlations
 - combinations and generalized versions possible
- non-parametric and parametric bootstraps/simulations of historic and future triangles
 - different marginals and copulae for parametric approach
- various analyses based on full predictive distributions
 - risk by accident years, reserve and premium risks
 - flexible (e.g. pairwise or complete) portfolio aggregations
 - split into estimation and process error
 - *m*-year and (updated) future one-year view
 - extensive plotting functions (model diagnostics, results)
- closed-form analytical estimators for benchmarking

Thanks for your attention!

Contact details:

Marc Linde

Marc.linde@generali.com

Literature

- Braun, C. (2004). The prediction error of the chain ladder method applied to correlated run-off triangles. Astin Bulletin, 34(2):399–423.
- Diers, D., Eling, M., Kraus, C., and Linde, M. (2013). Multi-year non-life insurance risk. *The Journal of Risk Finance*, 14(4):353–377.
- Diers, D. and Linde, M. (2013). The multi-year non-life insurance risk in the additive loss reserving model. Insurance: Mathematics and Economics, 52(3):590–598.
- Diers, D., Linde, M., and Hahn, L. (2016). Addendum to 'The multi-year non-life insurance risk in the additive reserving model' [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladder reserving models. *Insurance: Mathematics and Economics*, 67(C):187–199.
- England, P. D. and Verrall, R. J. (2006). Predictive distributions of outstanding liabilities in general insurance. Annals of Actuarial Science, 1(2):221–270.
- Hahn, L. (2017). Multi-year non-life insurance risk of dependent lines of business in the multivariate additive loss reserving model. *Insurance: Mathematics and Economics*, **75**:71–81.
- Heberle, J. (2014). *Verteilungsfreie Verfahren in der Schadenreservierung.* PhD thesis, University of Hamburg.
- Linde, M. (2016). Multi-year non-life insurance risk for correlated loss portfolios under chain ladder model assumptions. *Working paper.* Available at SSRN: https://ssrn.com/abstract=2869217.
- Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. Astin Bulletin, 23(2):213–225.
- Merz, M. and Wüthrich, M. V. (2008). Modelling the claims development result for solvency purposes. In Casualty Actuarial Society E-Forum, 542–568.
- Ohlsson, E. and Lauzeningks, J. (2009). The one-year non-life insurance risk. *Insurance: Mathematics and Economics*, 45(2):203–208.