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Did not have proper brakes…

THE FIRST CAR…
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Nicolas Carr, ‘The Big Switch’ (2013)

Where electricity extended man’s 

physical power

Information technology will extend man’s 

thinking power
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Will AI
replace you?
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AI = Cheap Predictions 

In economic terms…
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non‐predictions              predictions
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Complementary goods

AI Data + Judgement
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Judgement
Input

output
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AI 
is neither good nor bad, nor is it neutral. 

It is as good as the data fed to the algorithms. 

1st Law of Technology of Melvin Kranzberg, 2015
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Bias & discrimination
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Assumptions can be wrong
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If recruiters click more 
on white male candidates…

BEWARE OF THE FEEDBACK LOOP!
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Judgement 

output 
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AI in healthcare

Objective: predict probability of death for pneumonia patients to
discover priorities in treatment

Output: patients suffering both pneumonia and asthma had lower risk 
(surprising!)

Why: patients with a history of asthma were admitted directly to the IC

The data set does not always tell the whole story

CORRELATION ≠ CAUSATION
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You are a data scientist with pharmaceutical company

• One of your prescription medications is in very short supply
• The business wants to develop a tool to predict how to best prioritize 

distribution
• The tool seems to disfavor certain ZIP codes
• The algorithm is a black box
• Because of the tool:

• Distribution has improved
• Complaints about non‐availability have decreased

What should I do? 

NEW ETHICAL DILEMMA 1
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You are commercial director of a bank

• Divorce is large indicator for defaulting on mortgages and loans
• You are offered a tool predict likelihood of divorce based on analytics

of public social media posts
• All your competitors have this tool

Do you implement?

NEW ETHICAL DILEMMA 2
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AI Risks
Data is our biggest asset &

our biggest liability
CEO Google

Risk & legal perspective…
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The AI did it
is not an acceptable excuse. 

Algorithmic Accountability implies an obligation to report and 
justify algorithmic decision making and to mitigate any negative 

social impacts or potential harms. 

How to Hold Algorithms Accountable, MIT, Diakopulos and Friedler, 2017



Data Science & Data Ethics e-Conference | 29/30 June 2020 | Page 20

• If you have data you can use it
• No IP rights
• No “ownership” of data

• Data protection rules are organizing principles

• Portal function for other fundamental rights

• Privacy includes ethics!

WHY IS IT ALL ABOUT PRIVACY?
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• 118 countries have “GDPR style” legislation
• India, Australia, Brazil…

• EU “exports” GDPR in freetrade agreements
• Japan, Israel, New Zealand

• Outliers
• China, Russia, U.S., however…

GDPR IS NOT AN OUTLIER …
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2010
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2019
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June 2020
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What are the challenges?
• Discrimination & unfair bias

• Unforeseen applications

• Rendition of the Self

• Is consent possible?
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What are the challenges?

2. Unforeseen applications
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AI analyses vast amounts of data

Reveals correlations and patterns 
(descriptive)

Prediction of likely behavior of individuals 

(predictive) 

Used to direct or influence the future actions of individuals 
(prescriptive)

THE SCORED SOCIETY – KEATS, CITRON, PASQUALE 2014
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What are the challenges?

3. The Rendition of the Self
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2015 - NOT AN IDEALIZED SELF-PORTRAIT…
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2017-- REAL-TIME EMOTIONAL STATE…
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CONQUERING THE OFF LINE WORLD…
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AND OUR BODIES…
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We have 4 - 5.000 data points 
on every adult in the U.S. 

CEO Cambridge Analytica
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Did WEagree to this?
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How to regulate all this?
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THE COLLINGRIDGE DILEMMA 

David Collingridge, ‘The Social Control of Technology’ (1980)

The effects of new technology cannot 
be easily predicted until the 

technology is extensively deployed

yet once deployed become entrenched 
and are then difficult to change 
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• Require organizations that implement a new technology to evaluate 
the impact on privacy already in the design stage
• Privacy by Design

• There are numerous ethical issues that are less visible and that we do 
not yet have good answers for
• Ethics by Design

Data Protection Impact Assessment 

SOLUTION GDPR
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ETHICS  LAW 

42
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Human Centric – deploy AI only if clear benefit for people and society
(no unfair bias) 

Human Control – our processes within human direction and control

(no black box)

Human Accountability – we will remain accountable
(no blaming the algorithm)

Decision-making – transparency about decisions & underlying reasoning       
(review & appeal)

ETHICAL PRINCIPLES AI



Data Science & Data Ethics e-Conference | 29/30 June 2020 | Page 44

Fairness – no discrimination  
(no unfair bias)

Transparency – upfront & explanation after the fact 
(no black box)

Automated decision-making – right to obtain human intervention
(review & appeal)

Accountability – demonstrate compliance 
(burden of proof is on controller)

GDPR – ALGORITHMIC ACCOUNTABILITY
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So how to achieve 

Algorithmic Accountability?
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1. Design for development at the outset

2. Select the training dataset  (representative, accurate, no bias)

3. Verification of algorithmic outcomes in set stages of the development

4. Ensure transparency and explainability of outcomes to individuals

5. Can algorithm be used to prevent unlawful discrimination?

6. Ensure auditability of the algorithm

7. Document in DPIA

WHITE BOX DEVELOPMENT

4
6
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• You rarely have the right data

• You rarely have enough data

• Historical data is rarely unbiased

• Removing group-indicators does not work
• For any group indicator there is a near‐proxy…

• How to verify for bias if you do not have the group indicators in the 
first place? 
• You need a Master Data Set for verification purposes
• What if you do not have the sensitive categories? Can you collect these for these purposes?

INSIGHTS
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• With deep learning, development in stages is not possible

• You will have to verify ex-post output (rather than rely on ex-ante 
measures)
• New training methods: adversarial training

• Explainability: the gap between the technical meaning and societal 
meaning

• We need to re-think explainability as a means to actually increase 
autonomy

INSIGHTS
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• Actuaries & privacy & ethics experts part of design teams
• Indepth technical knowledge
• Training in ethical dilemmas
• Open culture

3-line of defense - compliance model 
hinders innovation

UPSKILLING AND RESKILLING

Morrison & Foerster LLP
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