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(The Guardian 2017, FAZ 2020, NYT 2018)
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Rise in long-term care expenditure

I Medicare program, aiming to support US residents with low income in

long-term care, raised from $225 billion in 2000 (2.2% of the gross

domestic product (GDP)) to $750 billion in 2018 (3.6% of GDP).

I Belgium: LTC spending (in terms of GDP) increased from 1.7% in 2000

to 2.3% in 2018 (source: Eurostat).

I United Nations projections: The number of elderly people, i.e. older

than 65, is projected to triple from 2020 to 2080 to reach 2.2 billion.

The global share of the elderly population is expected to rise from

9.4% in 2020 to 20.6% in 2080.
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Why pool mortality and long-term care (=morbidity) risks?

I People moving into dependency need more money but have a reduced
life expectancy!

=⇒ Natural hedge, diversification!

I Individuals in bad health cannot receive long-term care insurance!

=⇒ Combined product gives access to insurance for a larger
share of the population!

I Cost reduction due to reduced adverse selection!

=⇒ Combined product is attractive for people in bad health...
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Why (not) mutual insurance?

I +: No guaranteed payment from insurance company / pension fund!

Insurance company is only managing the product.

=⇒ Reduced risk for insurance provider!

I −: Policyholder is left with significant risk (longevity, duration of

long-term care)!

=⇒ Increased risk for policyholder!

I +: Cost reduction as there is no need for risk capital! Long-term care

risk charges are quite high...

=⇒ More people might find insurance attractive...
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Related literature

Mutual (life) insurance schemes gain popularity in academic literature:

I (Natural) tontines: Milevsky, Salisbury [2015, 2016], Chen, Hieber,

Klein [2019], Chen, Hieber, Rach [2020], Chen, Rach, Sehner [2020],

Chen, Qian, Yang [2020]. (. . .)

=⇒ Lifetime-actuarially fair, continuous-time, easy-to-explain,
closed pool.

I Pooled annuities, P2P insurance, (tontines): Sabin [2010],

Donnelly, Guillén, Nielsen [2013, 2014], Denuit [2019]. (. . .)

=⇒ Always actuarially fair / fully funded, discrete-time.

We follow the second bullet!
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Tontine products and mortality credits

Tontines were popular in the 17th / 18th century but gain popularity today:

I Le Conservateur (France).

I The Tontine Trust: https://tontine.com/#About.

Main idea of mortality credits: Survivors gain additional return based on

(1) mortality risk and (2) amount invested.

(e.g. Donnelly, Guillén, Nielsen [2013, 2014], Denuit [2019])
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Modular mutual insurance scheme: Our contribution

Based on Denuit [2019] (one-period scheme), we introduce a
mutual insurance scheme that is:

1. Able to pool heterogeneous mortality risks (by age, health).

2. Discrete-time.

3. Actuarially fair and fully funded in each period.

4. Modular, flexible: Adding or removing policyholders does NOT
change the AVERAGE payoff of pool members! (NEW)

Modularity allows to easily add policyholders fairly! We share the risk, the

average payoff is unaffected by pooling!
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Related literature and “modularity/flexibility”
Usually, the average payoff depends on the other pool members:

I Donnelly, Guillén, Nielsen [2014]:

I Milevsky, Salisbury [2016]:

Problem: Difficult to allow people to join the scheme later (closed-funds
(Milevsky, Salisbury [2016])). Average payoffs are difficult to predict and
depend on other (possibly future) pool members.
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Some notation
I Pool members L0 = {1, 2, ..., n}. Time in periods t = 0, 1, 2, . . ..

I Individual j ∈ L0 contributes single premium cj(0) at time 0.

I Deterministic, risk-free rate δt , t ≥ 0.

I Remaining lifetimes Tj , j ∈ L0, are assumed to be independent.

I Survivors: Lt = {j ∈ L0 |Tj > t}.

Deceased in (t − 1, t ]: Dt = Lt−1 − Lt .

I Survival probability: tpxj = E[1Tj>t ] = E[1j∈Lt ], pxj := 1pxj .

Death probability: qxj := 1− pxj . Maximal age ω ∈ N.

I Individual account value, fixed payoff sj(t):

cj(t) =

 e
∫ t

t−1 δsdscj(t − 1)− sj(t) , j ∈ Lt

0 , otherwise
(1)
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Mutual insurance: Insurer’s view and actuarial fairness
For each t = 0, 1, . . ., the premium equivalence holds: (pool view)

n∑
j=1

cj(t)︸ ︷︷ ︸
total account values

=
n∑

j=1

ω−xj∑
s=t+1

e−
∫ s

t δuduWj(s)︸ ︷︷ ︸
discounted future benefits individual j

. (2)

I Right hand side: random (big letter!)

I Left hand side: deterministic.

For each t = 0, 1, . . ., the contract is fully-funded: (individual view)

cj(t)︸︷︷︸
retrospective reserve

= Et

[ ω−xj∑
s=t+1

e−
∫ s

t δu duWj(s)

]
︸ ︷︷ ︸

prospective reserve

. (3)
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Mortality credits

In case of death of individual j , the following is redistributed within the pool:

Xj(t) := 1j∈Dt · e
∫ t

t−1 δsdscj(t − 1) ,

resulting in the pool’s total time-t mortality credit

X (t) :=
∑

j∈Lt−1

Xj(t) =
∑
j∈Dt

e
∫ t

t−1 δsdscj(t − 1) .
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An individual j ∈ Lt−1 receives a payoff of:

Wj(t) =


sj(t) + βj

(
X (t)

)
, if j ∈ Lt

βj
(
X (t)

)
, if j ∈ Dt

(4)

decomposed of

– sj(t): individual, fixed withdrawal amount,

– βj
(
X (t)

)
: collective part of the benefits, i.e. the mortality credits.

Essential part of modularity is a (small) death benefit βj
(
X (t)

)
!
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Definition (Fair distribution rule: mortality credits)
A fair distribution rule βj

(
X (t)

)
satisfies:

I Self-sufficiency property:
∑

j∈Lt−1
βj
(
X (t)

)
= X (t).

I Positivity property: βj
(
X (t)

)
≥ 0.

I Fairness property:

Et−1
[
βj
(
X (t)

) ]
= Et−1

[
1j∈Dt

]︸ ︷︷ ︸
probability to die in (t − 1, t]

· e
∫ t

t−1 δsdscj(t − 1)︸ ︷︷ ︸
amount at risk at time t

, (5)

where Et := E[ · | Ft ] is an expectation conditional on the information

Ft := σ(Lt).
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Example (Linear risk sharing rule)
At time t , each individual j ∈ Lt−1 receives the mortality credit (respectively

death benefit):

βj
(
X (t)

)
=

qxj+t−1 · cj(t − 1)∑
j∈Lt−1

qxj+t−1 · cj(t − 1)
· X (t) . (6)

(see, e.g., Donnelly, Guillén, Nielsen [2013, 2014], Schumacher [2018]

Example (Conditional mean risk sharing rule)
At time t , each individual j ∈ Lt−1 receives the mortality credit (respectively

death benefit):

βj
(
X (t)

)
= Et−1[Xj(t) |X (t) ] . (7)

(see, e.g., Denuit and Dhaene [2012], Denuit [2019])
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Individual j ∈ Lt ’s time-t account value is given by:

cj(t) =
ω−xj∑

u=t+1

e−
∫ u

t δsdssj(u) . (8)

How do we choose sj(u), u = 1, 2, . . . , ω − xj?

For example, choose the average payoff to be constant, equal to bj > 0:

Et−1[Wj(t) | j ∈ Lt ] = Et−1
[
1j∈Lt · sj(t) + 1j∈Lt−1 · βj

(
X (t)

)
| j ∈ Lt

]
= sj(t) + Et−1

[
βj
(
X (t)

)]
= sj(t) + qxj+t−1e

∫ t
t−1 δsdscj(t − 1) !

= bj . (9)

( (9) is a system of equations backwards in time!)
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Theorem (Backwards iteration)
If an individual j ∈ Lt aims for an average payoff bj(t), the fixed payoff is

given by:

sj(t) =


bj (t)

1+qω−1
, for t = ω − xj

bj (t)−qxj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsdssj (u)

1+qxj+t−1
, for t = ω − xj − 1, ω − xj − 2, . . . , 1

(10)

We derive the individual’s account value as

cj(t) =
ω−xj∑

u=t+1

e−
∫ u

t δsdssj(u) (11)

and the initial single premium as cj(0).
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Discussion

I The backwards iteration detects the split between fixed payoff sj(t)

and mortality credits βj
(
X (t)

)
that leads to an average payoff of bj(t).

I The backwards iteration can be carried out individually for each j ∈ L0

(modularity / flexibility).

I This allows different age cohorts to share mortality risks in a fair way.
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Motivation

A fair, heterogeneous, modular mutual insurance scheme

The Life-Care Tontine
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Life-Care Tontine: semi-Markov model

active (a) dependent (i,z)

dead (d)

1paa
xj

1pai
xj

1pid
xj ;z = q(i)

xj ;z
1pad

xj
= q(a)

xj

z: time spent in dependency.
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Life-Care Tontine: Mortality credits

In a first step, we adapt payments in dependency:

Et−1
[
βj
(
X (t)

) ∣∣ j ∈ At−1
]
= q(a)

xj+t−1 · e
∫ t

t−1 δsdsc(a)
j (t − 1) , (12)

Et−1
[
βj
(
X (t)

) ∣∣ j ∈ It−1;z
]
= q(i)

xj+t−1;z · e
∫ t

t−1 δsdsc(i)
j (t − 1; z) . (13)
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Adjusting benefits in dependency

A dependent individual receives an average increased payment
αj(T (a)) · bj(t) in dependency with αj(T (a)) > 1 and T (a) the time spent
in active state.

Fair adjustment constant based on French long-term care (LTC) data:
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Discussion and conclusion

I It is beneficial to pool mortality and long-term care (morbidity) risks.

I We propose a fair, modular / flexible mututal insurance scheme
(bj(t) for each individual j , we share the risk, the average payment is
unaffected by pooling!).

I We show how this scheme can be adapted to a life-care tontine
introducing the concept of morbidity credits.

I The scheme allows to pool different age cohorts.

I It is fully-funded at all times, allowing individuals to later join
the scheme!
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Thank you!
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