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ABSTRACT
Actuarial reserving techniques have evolved from the application of algorithms, like the 
chain-ladder method, to stochastic models of claims development, and, more recently, have 
been enhanced by the application of machine learning techniques. Despite this proliferation 
of theory and techniques, there is relatively little guidance on which reserving techniques 
should be applied and when. In this paper, we revisit traditional reserving techniques within 
the framework of supervised learning to select optimal reserving models. We show that the 
use of optimal techniques can lead to more accurate reserves and investigate the circum-
stances under which different scoring metrics should be used.
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1.	 INTRODUCTION
Since Bornhuetter and Ferguson (1972) encouraged actuaries to pay attention to 

the topic of Incurred But Not Reported (IBNR) reserves, a vast literature on loss reserving 
techniques has emerged; see, for example Schmidt (2017) and Wüthrich and Merz (2012). 
Several main strands of this literature can be identified: improved reserving techniques for 
calculating best estimates, reformulating these techniques statistically to calculate measures 
of uncertainty, and, most recently, the application of machine learning techniques to the 
problem of IBNR reserving.

Many new IBNR reserving techniques have been proposed since the development of 
the Chain Ladder (CL) and Bornhuetter–Ferguson (BF) techniques, with notable examples 
that are often used in common practice being the Cape Cod (CC) method from Bühlmann 
and Straub (1983) and its generalisation due to Gluck (1997), and the Incremental Loss Ratio 
(ILR) method, due to Mack (2002). These contributions provide new ways of determining 
IBNR reserves. Moreover, as reserving practice has developed, many smaller adjustments 
to the techniques have been suggested, for example, the summary measure to use when 
calculating chain-ladder factors, which may be estimated using weighted or simple averages, 
or medians. These smaller adjustments may sometimes not have a theoretical justification 
but are, nonetheless, often applied in practice.

Furthermore, reserving techniques have been enhanced through reformulation as 
statistical models, for example, two different models underlying the chain-ladder technique 
are given in the seminal contributions of Mack (1993) and Renshaw and Verrall (1998). 
Later contributions in this vein have extended the application of statistical techniques to the 
specific needs of insurance regulation, with a key result being the one-year viewpoint needed 
for Solvency II that is provided in Merz and Wüthrich (2008). These contributions allow for 
estimating the uncertainty contained in an IBNR analysis, for the purpose of quantifying 
capital requirements or producing risk adjusted cash-flows (see also England et al. (2019)).

Finally, recent developments have applied methodologies and techniques from the 
field of machine learning to the problem of IBNR reserving. Some of these applications have 
extended traditional techniques; see, for example, Wüthrich (2018) who develops a neural 
network model to predict loss development factors in the context of the chain-ladder method 
or Gabrielli et al. (2020) who use a neural network to enhance the predictions of an Over 
Dispersed Poisson (ODP) generalised linear model. Alternatively, other novel approaches 
have departed from familiar loss reserving techniques, for example, Kuo (2019) applies 
recurrent neural networks to triangles of incurred and paid loss ratios to derive estimates of 
IBNR. These contributions often produce more accurate results than traditional techniques, 
but at the cost of applying relatively more complex models.

Despite the proliferation of techniques for estimating IBNR reserves, there is not 
much guidance on choosing between the various techniques. Instead, actuaries in practice 
often rely on (well founded) heuristics to guide the choice of reserving model, for example 
using the BF technique to reserve for less developed accident years and the CL technique 
for more developed accident years. Since the choice of technique and the manner of its 
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application is not always done systematically and there is usually some subjectivity involved 
in this process, it can sometimes be difficult to justify IBNR reserving figures to auditors and 
regulators. Moreover, claims experience contained in loss triangles often departs from the 
model examples found in the literature, for example, loss development factors may display 
trends relating to changing claims settlement delays or shifting loss recognition practices and 
outliers relating to large claims may be present in the triangles. Also in this case, heuristics 
are often used to deal with these problems – for example, only the most recent diagonals in 
a triangle may be used to calculate loss development factors and outliers may be excluded – 
but a systematic method for performing the analysis required to derive IBNR reserves on 
these types of triangles seems not yet to have been addressed in much detail in the literature.

Furthermore, the development of Solvency II has complicated the issue of IBNR 
reserving further: Solvency II requires that reserves are set at the “best estimate” of the loss 
distribution, see, for example, European Union (2009) that requires that “the best estimate 
shall correspond to the probability-weighted average of future cash flows, taking account of 
the time value of money”. Without a systematic method of identifying the techniques that 
produce a best estimate reserve, actuaries are not only forced to rely on their professional 
judgement that a particular technique produces the best estimate, but must convince 
regulators of the validity of this judgement as well.

Finally, the context in which many IBNR techniques are presented in the literature is 
often restricted to a reserving analysis performed at a point in time to arrive at loss reserves, 
especially in the earlier IBNR literature. This is called the “static” perspective on reserving 
(Wüthrich & Merz, 2015). On the other hand, actuaries in practice must re-estimate loss 
reserves on a frequent basis (often quarterly), applying IBNR techniques to loss triangles that 
are augmented with new data and then reporting on the results. The accuracy of the actuary’s 
previous reserving exercise is often evaluated using an Actual versus Expected analysis (Bruce 
et al., 2015), which helps to guide the setting of reserves on the basis of emerging experience, 
but, nonetheless, changes in loss reserves must be justified on an ongoing basis to the Board 
and senior management of the insurance operation in which the actuary is employed. This 
“dynamic” perspective of reserving has, more recently, begun to be addressed, see, for 
example, Wüthrich and Merz (2015), who provides mathematical definitions for the claims 
development process over time and shows how these results can be used for model selection 
and back testing. Another example, from a reserve risk perspective, is Merz and Wüthrich 
(2014) who show how the total prediction error of IBNR in the CL method can be split into 
the contribution of the reserve risk for each calendar year. Here, we focus on the dynamic 
perspective and discuss how reserving models can be selected and parametrised to produce 
good forecasting performance on unseen claims development experience.

In this paper we present a framework through which the actuary can analyse the 
properties of traditional reserving methods from the dynamic perspective of reserving, with 
the goal of assisting with model selection. We investigate how well the models selected using 
this framework perform for producing best estimate predictions of claims development. We 
do not depart from applying familiar techniques such as the CL and BF, but rather look 
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to optimise the predictive accuracy of the reserves produced using these techniques. Since 
large reserving triangles are available to many actuaries working in companies with an 
extensive loss history, we propose that the actuary re-reserves consecutive calendar years, 
at each point adding a new diagonal of experience, and then investigates the outcome of 
each previous reserving exercise based on the actual experience contained in the triangle. To 
measure the effect of different approaches used to re-reserve these prior years, we define an 
objective function to score the approaches using metrics familiar to reserving actuaries. The 
optimal set of techniques, and the adjustments to these techniques, is then selected as those 
minimising the objective function.

The rest of the paper is organised as follows. Section 2 provides a notation for the frame
work proposed in Section 3. Two applications of the method are discussed in Sections 4 and 
5. Finally, Section 6 concludes the paper with a discussion and avenues for future research.

2.	 LOSS TRIANGLE NOTATION AND METHODS
In this section, we provide a short mathematical definition of the claims reserving 

problem and common methods that are applied in practice. For a complete treatment of this 
topic, we refer the reader to Wüthrich and Merz (2012).

2.1	 Loss triangle notation
IBNR reserving is usually performed on claims data aggregated into a triangle shaped 

array (although other configurations such as trapezoids are sometimes seen in practice, 
we do not address these here). Suppose that claims data have been observed at the end of 
every calendar year for the past K years, i.e. k  [0…K]. Claims (whether claim payments 
or changes in estimates of the payments for a particular claim), which are denoted as i jX , , 
are allocated to cells of the triangle according to the accident year, in which a loss occurred, 
i  [0…I], and the development year, j  [0…J], in which the payments were made or the 
estimates changed. Note that one could also use quarters, months, or other time periods 
without loss of generality and that, depending on the purpose of the analysis, claims could 
also be allocated by reporting year or underwriting year; however for simplicity, we restrict 
our discussion in this section to accident years. In these definitions, we work with triangles 
in which the number of accident years are equal to the number of development years, i.e. 
I = J = K, and no development is expected after development period J (i.e. no tail factor is 
needed), but the method we propose is not limited to this case. Often, reserving methods are 
applied to the cumulative values of claims

, ,
0

j

i j i j
i

C X
=

=å

which can also be arranged in a triangular array. We define a reserving triangle observed in 
year K, KD , as

	 { ;K
i jC i j K,D = + £ }.
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The claims occurring in the most recent calendar year can be found on the largest diagonal 
of the triangle defined as the set
	 { ;i jC i j K, + = }.

To ensure that sufficient funds are retained to cover the claims liabilities of a company, 
liabilities equal to an estimate of all claims to be reported in the future are held. Since the 
final, or ultimate, amount of claims arising from each accident year i, i JC , , is not known, 
IBNR techniques are applied to produce an estimate of these claims ˆ k

i JC ,  in each calendar 
year k (in practice, this may be done more frequently than annually). Then, IBNR reserves 
for accident year i, *

k
i j

R
,

 are calculated as *
ˆ k

i J i j
C C, ,

- , where *j k i= - . This expression can be 
rearranged in terms of the forecast incremental claims such that * 1

ˆJk
i j l j i l

R X, = + ,
=å . Thus, the 

estimation of IBNR reserves depends on the estimate of ultimate losses.

Remark. We have taken care to define estimates of ultimate claims and IBNR reserves 
as being at a point in time k, since the method proposed here tries to establish the 
accuracy of these estimates as more information is added to the triangle i.e. we are 
interested in the dynamic view of reserving.

If a perfect forecast (in other words, incorporating knowledge of all of the future claims 
experience) of i JC ,  could be made by the actuary in a calendar period k, then there would be 
no fluctuation in the estimated ultimate claims over consecutive calendar periods. In reality, 
since perfect forecasts cannot be made, the actuary’s forecasts of the ultimate claims may 
change as more information becomes available over subsequent calendar periods.

To this point, we have not defined any of the statistical properties of the estimates of 
claims to be reported in the future, ˆ k

i JC , . From some (currently less fashionable) actuarial 
perspectives, it might be considered optimal for an insurer to produce upwardly biased 
estimates i.e. for ˆ[( )]k

i J i JE C C, ,- ≥0, thus producing reserve estimates that are expected to be 
more than sufficient to cover the actual claims. To make this fully rigorous, one needs to 
define the probability distribution of i JC ,  which is unknown, thus, in practice if conservative 
reserve estimates are being produced, these are evaluated against the reserve estimates 
produced by the IBNR reserving methods. Solvency II, International Financial Reporting 
Standard (IFRS) 17 (IASB, 2020), and other similar regulations, require that the reserves be 
set as a best estimate. In the case of Solvency II, the best estimate is defined in the regulations 
on an assumption that, somehow, the future distribution of cashflows is known, see European 
Union (2009) which states that “the best estimate shall correspond to the probability-
weighted average of future cash flows, taking account of the time value of money”. A more 
pragmatic definition of the best estimate should, at the minimum, include that at time k, 
the estimates of ultimate claims are expected to correspond to the actual claims that will be 
reported with minimal error, which could be quantified, for example, with the mean squared 
error by ensuring that ˆ[( )]k

i J i JE C C, ,-  is as small as possible. The method that we describe 
later in this study can be used to provide some evidence that the selected reserving methods 
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in fact produce estimates with minimal error on observed claims development and produce 
relatively low error on unobserved claim development.

2.2	 Claims development result as an optimisation objective
Differences between forecasts of the ultimate claims in consecutive periods give rise 

to the Claims Development Result (CDR) of Merz and Wüthrich (2008), which is a measure 
of the profit or loss incurred by a company due to the experience of past accident years. The 
CDR for accident year i in calendar year k is defined as

	

( )

( )

* * * *

* *

* * *

* * *

1

1
, , , 1 , 1

1
, ,, , 1
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1 1
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æ ö÷ç ÷ç= + - + ÷ç ÷ç ÷è ø

= - + -

= - +

å å 	 (1)

where *
k
i j

AvE
,

 is the actual versus expected (AvE) result of the incremental claims on 
the next diagonal of the triangle. Thus, the CDR can be expressed as the sum of the 
difference between the sequential forecasts of the IBNR reserves for development period 

*j  and onwards plus the difference between the actual incremental claims experience in 
development period * 1j -  and the expected claims experience. The latter part of the CDR, 
which is nothing more than the error of the forecast of the incremental claims made at 
time k − 1, is often inspected by actuaries in the form of an actual versus expected analysis, 
which is a diagnostic used to make changes to the IBNR reserves for the next calendar 
year. Changes made to the reserves on the basis of the CDR will reflect in the annual profit 
and loss statement of the insurance entity, and the key contribution of Merz and Wüthrich 
(2008) is to provide a distribution of the mean squared error of prediction (MSEP) of the 
CDR, which allows for the calculation of reserve risk capital under the one-year definition 
of Solvency II; see Ohlsson and Lauzeningks (2009) for more detail. Also, *

k
i j

AvE
,

 forms the 
basis of the bootstrap methods proposed by England and Verrall (1999), which derives 
actual versus expected results from a comparison of a fitted CL model to an observed 
triangle, and then bootstraps these residuals.

At any calendar year k, the CDR for the subsequent year, 1k
iCDR + , is not yet known. 

However, with a suitably long claims history, the CDR that would have arisen in previous 
calendar years had a particular IBNR reserving method been followed can be calculated and 
can provide an indication to the actuary how suitable her reserving method is. In this paper, 
we use the CDR and AvE metrics assessed on historical data, in the manner just described, to 
assess the suitability of different applications of IBNR reserving techniques, and we select the 
optimal reserving method that minimises the CDR in previous time periods. In other words, 
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we use the CDR and AvE metrics as objective functions measuring the quality of a reserving 
methodology that we seek to minimise.

The CDR can be seen as composed of two components: first, the quality of the forecasts 
made is evaluated via the AvE metric, * * *

1ˆ )k k
i j i j i j

AvE X X -
, , ,

=( -  and second, the stability of the 

reserve estimates for future years, * *
1k k

i j i j
R R -

, ,
-  is added. From an optimisation perspective, it 

may be possible that some reserving techniques fit the observed data very well, i.e. minimise 
the AvE metric, but at the price of erratic and less accurate future reserving estimates. Thus, 
considering the CDR as an optimisation objective may maintain the stability of the reserve 
estimates and could help to regularise the models chosen.

Remark. Other formulations of an objective function for optimisation could be 
considered, based on the CDR. For example, more or less weight could be given to 
the stability of the reserving by adding a parameter  to the CDR

( )* * *
, 1

, , ,
k k k k
i i j i j i j

CDR R R AvEa a -= - + ,

which could be optimised jointly with other hyperparameters. Alternatively, one 
could recognise that the AvE term in fact acts to minimise bias, and another term 
could be added to the objective function to penalise poor forecasts, for example the 
mean square error. We do not explore this further in this study.

In this study, we focus on minimising the squared differences between the CDR and AvE 
metrics, and 0, which, according to the above, is the same as minimising the difference 
between forecasts of ultimate claims made in consecutive years and the difference between 
actual and predicted claims in the next diagonal, respectively. In particular, based on a choice 
of reserving methodology, we calculate (note that we want to minimise the difference from 
zero and 2( 0)k

iCDR -  reduces to what is shown as the numerator below):

	
*

*

2

1

1

| | (
,

| |

I
k
ii j

i
score I

i j
i

X CDR
CDR

X

,
=

,
=

)
=

å

å
	 (2)

where we weight the score by the absolute value of the incurred claims in each year and 
analogously, we also calculate a score for the AvE metric, AvEscore. We refer to these scores as 
the root mean square error (RMSE) of the CDR, or the AvE, respectively.

When measuring the predictive performance of the reserving methodology, we base 
this on the actual claims development in several out-of-sample calendar years, as specified in 
each of the case studies below (which is the yellow area of Figure 1).
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2.3	 Methods
This section briefly reviews three of the most well-known IBNR reserving methods 

using triangles, that are used in the paper.

2.3.1	 CHAIN LADDER
The Chain Ladder (CL) method produces forecasts for the unknown ultimate claims 

i JC ,  based on the key assumptions that future claims development will be in line with past 
claims development and that the current magnitude of the claims for an accident year i jC ,  
can be used to predict the magnitude of future reported claims. More precisely, the key 
assumption of the CL method is that 1[ ]i j j i jE C f C, + ,= , where the forecasts are made using so-
called loss development factors (LDFs), jf , multiplied by the current known claims amount. 
Since we consider several different methods in this study, we denote forecasts made using 
the CL method as , 1

ˆCL
i jC + . The true LDFs, jf , are not known and must be estimated from 

the available claims development data, thus, throughout, we work with estimated LDFs, ˆ
jf . 

Forecasts of ultimate claims are made by , , , ,
ˆˆ ˆ

J
CL
i J j J i j k i j

k j
C F C f C

=

= =Õ . The LDFs can be estimated 
as follows:

	 , 1 , ,
1 1

, ,
1 1

ˆ
ˆ

I j I j

i j i j i j
i i

j I j I j

i j i j
i i

C C f
f

C C

- -

+
= =
- -

= =

= =
å å

å å
	 (3)

which shows that ˆ
jf  is a weighted average of the individual development factors , 1

,
,

ˆ i j
i j

i j

C
f

C
+= .

Mack (1993) shows that under minimal assumptions, the estimated LDFs ˆ
jf  produced 

using Equation 3 are unbiased estimators of the true parameters jf . In practice, actuaries 
often use variations on the CL method, in particular, by changing the manner in which the 
LDFs are calculated. For example, the weighted average in Equation 3 may be replaced with 
a simple (i.e. unweighted) average, or another summary statistic such as the median could 
be used. Alternatively, whereas the calculations in Equation 3 use all of the accident years in 
the triangle, in practice, actuaries often use data from only the most recent accident years to 
calculate ˆ

jf , or exclude some of the factors, effectively re-weighting the calculation of ˆ
jf  with 

weights i jw , , which are chosen subjectively, and are typically 1 for individual development 
factors to be included, and 0 for those to be excluded:

 
	

, , ,
1

, ,
1

ˆ
ˆ

I j

i j i j i j
i

j I j

i j i j
i

C f w
f

C w

-

=
-

=

=
å

å
	 (4)

A final option is to calculate accident year specific weights based on an exponential decay 
factor leading to individual development factors in closer proximity to accident year i 
contributing more weight.
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2.3.2	 BORNHUETTER–FERGUSON
The Bornhuetter–Ferguson (BF) method seeks to reduce the reliance on the 

current claims amount i jC ,  when projecting the ultimate claims, by assuming that future 
claims development will be proportional to the actuary’s expectation of the ultimate loss, 

( ) ( ), , ,
ˆ 1BF k

i J i j j i JC C E Cb= + - , where jb  is an estimate of the percentage of losses reported at 
development period j, and is usually taken as the inverse of ,

ˆ
j JF , and ( k

i JE C , ) represents the 
expected ultimate losses for accident period i. If this expectation is set using the CL ultimate 
claims, ,

ˆCL
i JC , then the BF method reduces to nothing more than CL method. Thus, to reduce 

the reliance on the current known claims i jC , , an independent estimate of the ultimate claims 
is ordinarily used in the BF method, which is often expressed using an expected ultimate loss 
ratio, i.e. ( ) 

,

, ,
ˆ 1

k BFBF
ii J i j j iC C ULRb p= + - , where ip  is the earned premium in accident period i 

and 
,k BF

iULR  is the actuary’s expectation of the ultimate loss ratio at time k for accident year 
i, which has been derived independently of the claims experience to date.

In practice, these expected loss ratios may be set using input from pricing actuaries 
or underwriters, or on the basis of past experience from previous accident years, meaning 
that, the choice of expected ultimate loss ratio is subjective. In applying the BF method, in 
addition to needing to select ultimate loss ratios, if the CL pattern is used as an estimate of 

jb , then all of the subjective choices for applying the CL method also apply.

2.3.3	 CAPE COD AND GENERALISED CAPE COD
The Cape-Cod (CC) method of Bühlmann and Straub (1983) provides a way of 

inferring the ultimate losses from the loss data in an actuarially principled manner, by 
assigning greater credibility to accident years that are more developed. On the assumption 
that all accident years are expected to have the same ultimate loss ratio, the Cape Cod method 
calculates an estimate of the ultimate loss ratio:

	


, 1,
1

1
1

I

n I nk CC
n

i I

n I n
n

C
ULR

p b

- +
=

- +
=

å

å
.	 (5)

 

This estimated ultimate loss ratio is then used in place of 
,k BF

iULR  in the BF method.
The assumption of a constant ultimate loss ratio for all accident years can be relaxed. 

One method of doing this is the Generalised Cape Cod method of Gluck (1997), which 
assigns greater credibility to the loss experience in years that are close to each other using an 
exponentially weighted average, as shown in Equation 6, where the decay factor γ weights the 
observed claims experience by time.

	 

( )

( )

, 1,
1

1
1

I
abs i n

n I nk GCC
n

i I
abs i n

n I n
n

C
ULR

g

p b g

-
- +

=

-
- +

=

å

å
	 (6)
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It can be shown that setting the decay factor to zero produces the chain-ladder forecast 
and setting the factor to 1 produces the Cape-Cod loss ratio, therefore, the GCC method 
generalises between the CL and CC methods.

In practice, the decay factor is often set equal to 75% based on Struzzieri et al. (1998), 
however, since the reserves can be quite sensitive to the choice of the decay factor, the choice 
usually requires quite some judgement on the part of the actuary.

2.4	 Summary
In this section we have defined the key concepts that will be used throughout the rest 

of the paper, and defined three commonly used reserving methods. Even with limiting the 
choice of methods to the CL, BF and GCC, nonetheless, there are a number of subjective 
choices that the actuary must make before applying the methods in practice, as detailed at 
the end of each of the three previous subsections. Some quite complicated ways of applying 
these techniques might be formulated, for example, the steps might consist of the following:

—— Derive loss development factors for each development period using the weighted 
average estimator of the development factors as given in Equation 4, where the weights 
are set according to zero if any individual development factors are greater than or less 
than a certain threshold, which has been set subjectively.

—— If working with an incurred triangle, decide on how much negative development to 
allow for and exclude any LDFs that give too much negative development.

—— Using the development pattern as a plug-in estimator of jb , apply the GCC method 
using a decay parameter set by judgement.

—— In some circumstances, modify the reserves using a different loss ratio assumption.

This is a representative example of the many steps that might be undertaken in a practical 
reserving exercise.

3.	 MACHINE LEARNING APPROACH TO IBNR RESERVING
In the previous section, we have presented different methods that can be applied for 

reserving for IBNR claims, without much consideration of which method should be chosen 
and how the method should be applied to produce the most appropriate result. As mentioned 
in the introduction, in practice, these choices are often made on the basis of well-founded 
heuristics and experience, and the performance of these choices are monitored over time 
using metrics such as actual versus expected analysis.

In this section, we borrow methodology from the field of machine learning to select 
reserving models and make appropriate choices for the parameters that will help to ensure 
that accurate predictions are made by the models on unseen (i.e. out-of-sample) claims 
development data. Note that we do not attempt to give a full overview of machine learning 
here, thus, for a general introduction to different modelling approaches we refer the reader to 
Friedman et al. (2009) and Goodfellow et al. (2016), and in the context of actuarial modelling, 
we refer the reader to Richman et al. (2019) and Wüthrich and Buser (2018).
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Similar to the field of reserving with different methods available to produce reserve 
estimates, in the field of machine learning many different types of models are available to 
produce predictions, see Friedman et al. (2009) for an overview. Furthermore, many of these 
models require the choice of hyperparameters which cannot be calibrated from the data, 
for example, the number of layers in a neural network. The machine learning approach to 
selecting among competing models and hyperparameter settings usually proceeds as follows. 
If enough data is available, then the data is partitioned into two disjoint subsets, with one, 
usually larger subset, used to train the model and the other subset used to test the model 
performance on unseen samples. If the data are small, then other schemes to test model 
performance might be applied, for example, cross-validation; see Friedman et al. (2009) for 
details. These techniques have in common that predictive performance is tested on out-of-
sample data, and the model with the best predictive accuracy is usually the one selected 
for the modelling task, from a range of model types, formulations and parameters. Thus, 
different from traditional actuarial modelling which uses well-founded expert judgement 
and professional knowledge and experience to select models subjectively, the machine 
learning approach selects the class of model and the parameters based on their contribution 
to increasing the predictive accuracy of the model.

Applying this to reserving, we consider that to derive the claims reserve for the 
triangle KD , the actuary adopts a predictive model M, such that ( ),

,
ˆ k M k

i j
R M X= =D , which 

is a selection of a model from some space M containing all possible models. To perform this 
choice in a quantitative manner, then the choice of MM should be made on the basis of 
how well we expect the selected model to perform on predicting the unknown future claims 
amounts, i.e. it becomes necessary to score each of the potential models. Rather than use a 
likelihood function which must be based on assuming some statistical distribution for the 
claims amounts,1 we rather suggest that the score should reflect the goals of the reserving 
analysis, which, in the best estimate case, can be articulated as minimising either the actual 
versus expected claims or the claims development results on out-of-sample data.

To estimate these scores on out-of-sample data, it is necessary to compare the actual 
claims experience to the expected, and we do this in a sequential manner to maximise our use 
of the available data. We proceed to find the optimal model using the following procedure, 
which references Figure 1 for clarity:

—— Select a reasonably sized triangle of claims development experience which will provide 
data for fitting all of the models (shown as “Initial Triangle” in blue in Figure 1). Note 
that new diagonals of experience will be added to this triangle in the subsequent steps.

—— Select several of the most recent calendar years of the triangle as the training set with 
the first calendar year in the training set being ktrain (shown as “Training Data” in 
green in Figure 1).

1	 Whereas it is commonly assumed that incremental claims amounts are distributed according to the 
Over-dispersed Poisson distribution, distributional assumptions for the cumulative claims amounts 
are not made that often.
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—— Select a reserving model for each M in a subset of M. For each M perform the following 
steps:
1. � For the first calendar period ktrain in the training set, find the reserves by calibrating 

all of the model parameters on Δktrain, which is the blue area plus the first diagonal 
as shown in Figure 2 .

2.  For each subsequent calendar year k in the training set:
(a) � Calculate the score for each accident year as k

iCDR  or *,
k
i j

AvE , based on the next 
diagonal of experience. Note that, at this stage, this next diagonal has not been 
used to fit the reserving model, i.e. it is out-of-sample data.

(b) � Calculate the weighted score across accident years, using the incremental claims 
as weights (see Equation 2).

(c) � Re-estimate the reserves ( ),
k k
i j

R M X= =D  by refitting the model using the extra 
calendar year of data. This is shown for the first iteration in Figure 3.

3. � Calculate and store the average score across all of the calendar years in the training 
set, MS .

—— Select ( )M
opt M MM = argmin SÎ .

Note that the assessment of the CDR and AvE scores performed in this procedure is on 
unseen data, in other words, this is an assessment of out-of-sample predictive performance. 
We illustrate the data used by the procedure in Figure 1.

Practically, in this study we only work with a subset of M that is defined by the CL, 
BF and GCC models, and some options for selecting the parameters for these models in 
different ways. We then set up a simple grid containing the different modelling options for 
each of the methods, and calculate the score for each option as described in the algorithm 
above. In the following case studies, we test the use of both the CDR and the AvE metrics 
as scoring functions for each model. As noted in Section 2.2, the CDR can be thought of 
as a regularised actual versus expected score where the penalty term added to the AvE 
result is the change in the ultimate reserve estimate between calendar years. This enforces 
that the optimal algorithm not only reduces predictive error by minimising *

k
i j

AvE
,

, but 
also stabilises reserves by minimising the change in reserves between calendar years. This 
is especially important for classes of business that take a long time to develop (so-called 
“long-tail” classes), since usually enough information to change reserve estimates only 
becomes available after several years of analysis. On the other hand, particularly in the 
case of lines that develop quickly (so-called “short-tail” classes) or in the case of rapidly 
changing calendar year trends in the triangles, maintaining stable reserves may not be 
a valid goal, thus, in the sections that follow, we also consider optimising using the AvE 
metric.

In the following sections, which illustrate applications on several reserving triangles, 
we measure the performance of the optimal model Mopt by calculating the RMSE of the 
ultimate claims predicted by the model against the true ultimate claims in the triangle. To 
evaluate whether the scoring procedure selects a model with good predictive performance, 
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Figure 1 Illustration of how the scoring procedure splits up each triangle. All models utilise 
the blue initial triangle and then add new diagonals of experience from the training set, 
which is shown in green. The training set is comprised of several diagonals of the triangle 
on which firstly, the predictions of each reserving model are tested and then subsequently, 
the models are refit. The yellow area represents unknown claims development that is not 
used in the scoring procedure, which is shown in green. The training set is comprised of 
several diagonals of the triangle on which firstly, the predictions of each reserving model 
are tested and then subsequently, the models are refit. The yellow area represents unknown 

claims development that is not used in the scoring procedure.

Figure 2 Illustration of the first iteration of the scoring procedure. The first diagonal of claims 
experience has been added to the initial triangle. The model will be fit to this augmented 
triangle, and the experience assessed against the second diagonal (which is not shown in 

this figure). 
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we also calculate the RMSE of all of the other models and compare these to the RMSE of the 
optimal model.

The computations are performed in Python using the chainladder package (Bogaardt, 
2020). The package allows for many reserving methods including the CL, BF, and GCC 
methods, as well as the selection of key parameters for each of these methods. In the tables 
defining the subset of models which we score below, we supply the name of the package 
parameters to enable easy reproduction of our work.

4.	 CASE STUDY 1: SWISS PRIVATE LIABILITY
In this section we present a detailed case study of applying the framework in Section 3 

to a single large reserving triangle, using each of the CL, BF, and GCC methods. For the case 
study, we use a Swiss private liability claims triangle that was taken from Gisler (2015). The 
triangle contains claims development from 1979 until 2015 for a major Swiss insurer and 
Gisler (2015) notes that the figures have been adjusted for privacy reasons. The accident years 
range from 1979 until 1997, and the full development history is available until calendar year 
2015. Since no premium data is provided for the triangle, premium data has been simulated 
by assuming a 60% loss ratio target as follows:

—— Actual ultimate claims, i JC ,  are taken from the latest development year (recalling that 
we have the full triangle available).

—— To provide some element of randomness, a linear regression model is fit to the ultimate 
claims using the accident years as a predictive variable, to generate a series of estimates 

,
ˆ

i JC .
—— Residuals for each accident year , ,

ˆ
i i J i JC Ce = - , are calculated and are resampled using 

a single iteration of bootstrapping.

Figure 3 Illustration of the second iteration of the scoring procedure. The first two diagonals 
of claims experience have been added to the initial triangle. The model will be fit to this 
augmented triangle, and the experience assessed against the third diagonal (which is not 

shown in this figure).
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—— The bootstrapped residuals are used to calculate pseudo-ultimate claims, * *
, ,i J i J iC C e= + , 

where *
ie  represents the bootstrapped residual allocated to accident year i.

—— Pseudo premium for each accident year is then calculated as 
*

0.6
i JC , , i.e. we assume a 60% 

loss ratio.

A single iteration of this procedure results in a weighted-average ultimate loss ratio of 59.4%. 
We show the triangle and the simulated premium figures in Appendix A, which follows the 
same colouring scheme as used in the previous section.

The AvEscore and CDRscore were calculated across 13 calendar years from 1984 to 1996 for 
each parameter set. We chose these years for the training data to provide as much experience 
for the optimisation process as possible, while not starting the optimisation on a very small 
triangle. The test set was comprised of the future development of each of the accident years 
(1979 to 1997) over the entire lower triangle.

4.1 	 The chain ladder method
Here, we consider three variations on the basic CL method, which uses all accident 

years for calculating the loss development factors and does not exclude any of the individual 
development factors. These variations allow for the varying of the number of accident years 
included in the calculation of the loss development factors ˆ

jf , and for assigning a zero weight 
to one or both of the largest or smallest of the individual factors ,î jf  when estimating ˆ

jf , due to 
these potentially being outliers and not representative of future claims development experience. 
In what follows, we refer to the application of the CL method without these variations as the 
“basic” CL method. We show these variations on the CL model in Table 1, which results 
in 36 unique combinations of parameters. Note that the search space could be expanded, 
for example, instead of choosing to drop the highest and lowest individual factors in all 
development periods, this choice could be made for each development period independently, 
or multiple calendar years could be excluded from the calculation. Since the number of possible 
combinations of parameters grows rapidly with each additional option added, practically one 
is forced to use a more limited search space; nonetheless, even searching over a limited number 
of combinations can result in some improvement over the standard CL method.

Table 1 Search space for CL method

 Parameter Choice set Description

drop_high [True, False] Whether to drop the highest individual development factors, ,î jf , in all development periods

drop_low [True, False] Whether to drop the lowest individual development factors, ,î jf , in all development periods

 n_periods k  [10..19] Number of accident years, k, over which to calculate ˆ
jf

Using the framework defined in Section 3, the variations on the CL method with the 
parameters given in Table 2 were found to minimise the AvEscore and CDRscore. The table also 
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shows the parameters used to define the basic CL method. Using a maximum of 11 of the most 
recent accident years (out of a total of 19) was found to be the optimal choice to minimise 
both scores. Dropping the highest individual development factor minimised the CDRscore, 
whereas not dropping any individual development factors minimised the AvEscore. Figure 4 
shows the AvEscore and CDRscore metrics for each combination of the options in Table 1 on the 
training data. It can be seen that the model performance is much more sensitive to the choice 
of which development factors to drop than the number of periods of claims experience to 
include in the calculation of the development factors.

Table 2 Optimal parameters found for CL method

Parameter Basic CL Minimise AvE Minimise CDR
drop_high False False True
drop_low False False False
n_periods 19 11 11

Table 3 shows the RMSE of the projected ultimate claims against the actual ultimate claims 
in the triangle, i.e. here we are testing how the selected models perform in predicting the 
final claims development of the triangle, which is the area in yellow in Figure 1. Despite the 
AvEscore being minimised on the training data with the given parameters, the resulting (out-
of-sample) ultimate claim predictions are slightly worse than the basic CL model. On the 
other hand, the model selected by minimising CDRscore performs better than the basic CL 
model. The rank column in Table 3 shows how well the selected model performed compared 

Figure 4 AvE and CDR score for CL method on the training data
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to all of the models considered. In this case, using CDR as the scoring metric results in a 
model in the top third of the search space. The RMSE scores achieved by the selected models 
are compared against all the other models in Figure 5.

Figure 6 shows an evaluation of the performance of the basic CL method, and the two 
optimal models for each accident year, by subtracting the expected ultimate claims produced 
using each model from the actual ultimate claims i JC , . For the model selected using the AvE 
score, which only reduced the number of accident years considered when calculating the 
LDFs, the figure shows that using a lower number of periods over which to calculate the 
development factors has minimal to no impact until the most recent accident years, where 
the ultimate claims are underestimated marginally more than the basic CL. Also, both the 
basic CL and minimising the AvEscore tend to overestimate development in most accident 
years. On the other hand, minimising the CDRscore reduces overestimation in these years at 
the expense of underestimating claims on the most recent accident years, and accident years 
1988 through 1991. However, on average the estimates of the ultimate claims are closer to 
the actual ultimate claims than both the basic CL and the model found by minimising the 
AvEscore.

Table 3 RMSE of actual ultimate claims versus predicted ultimate claims using the CL method

Model RMSE Delta Rank
Basic CL 669.69 – 23 out of 40
Minimise AvEscore 675.38 +0.9% 27 out of 40
Minimise CDRscore 617.81 –7.8% 12 out of 40

Figure 5 Boxplot of RMSE for all CL models
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Figure 7 shows the IBNR reserve by accident year for each approach and Table 4 shows the 
total IBNR across all accident years. The basic CL IBNR results in the largest IBNR reserves. 
The optimal variations on the CL method both produce lower IBNR reserves than the 
estimate derived using the basic CL method, with the estimate derived using the model that 
minimises the CDRscore metric 16.3% lower than the basic CL method respectively. Since, at 
least using the CDRscore metric, it is possible to find a variation on the CL method that results 
in more accurate predictions than the basic CL method, this indicates that the basic CL 
method is not a producing a best estimate on the Swiss triangle, i.e. the basic CL reserves are 
too conservative.

Table 4 Total IBNR reserve for CL tuning

Model Total IBNR Delta
Basic CL 37 727 –
Minimise AvEscore 37 417 –0.8%
Minimise CDRscore 31 595 –16.3%

4.2	 The Bornhuetter–Ferguson Method
Applying the BF method requires the choice of an expected ultimate loss ratio 

in addition to the loss development factors from the CL method. We consider the same 
variations on the CL method as in the previous subsection, but include in addition a search 
over possible choices for the expected ultimate loss ratio of the BF method. Since we expect 

Figure 6 Actual ultimate claims minus predicted ultimate claims by accident year, for each of the 
CL models
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the loss ratio to lie within the 50% to 70% interval (since we derived premiums on the basis 
of a 60% ultimate loss ratio), the search space for loss ratio is limited to 1% increments in this 
range, which expands the total search space, shown in Table 5, to 756 unique parameter sets.

Table 5 Search space for BF method

 Parameter Choice set Description

drop_high [True, False] Whether to drop the highest individual development factors, ,î jf  in all 
development periods

drop_low [True, False] Whether to drop the lowest individual development factors, ,î jf  in all 
development periods

n_periods k  [10..19] Number of accident years over which to calculate ˆ
jf

apriori α  {0.50, 0.51, …, 0.69, 0.70} Apriori loss ratio for the BF method

Table 6 shows the parameters that were found to minimise the RMSE of the AvE and CDR 
scores on the training data. Since we know the true loss ratio is 60%, we apply a basic BF 
method (i.e. using the CL development pattern without any of the variations considered 
previously) using a loss ratio of 60% for comparison purposes. Using 15 of the most recent 
accident years was found to minimise the AvEscore, whereas 11 accident years remained optimal 
for minimising the CDRscore. The optimal choices for dropping individual development 
factors remained the same as for the CL method for both scores. Minimising the AvE and 
CDR scores led to a choice of 59.0% as the expected ultimate loss ratio (called “apriori” in the 
table), which is in line with the true value of 59.4%.

Figure 7 Comparison of IBNR  reserves by accident year
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Figures 8 and 9 show the AvEscore and CDRscore metrics for each combination of the 
options in Table 5 on the training data. As would be expected, the BF method is very sensitive to 
the choice of loss ratio and when this is poorly chosen, the models are penalised quite severely.

Table 6 Best parameters found for BF method

Parameter Basic BF Minimise AvE Minimise CDR
drop_high False True True
drop_low False False False
n_periods 19 15 11
apriori 0.60 0.59 0.59

Figure 8 AvE score for BF method on the training data
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We remark that, although we considered all parameter combinations when finding the 
optimal models, since the CL model specification underlying the BF model that was selected 
using the CDR score remained the same as in the previous section, it seems to be possible 
that one could select an optimal BF method in a two-step process: first by finding an optimal 
variation of the CL model and then by finding the optimal loss ratio. Following this two-step 
procedure would have produced the same model as that selected using the CDR score, but at 
much lower computational cost.

Table 7 shows the RMSE of the projected ultimate claims against the actual ultimate 
claims for the BF method. In terms of ranking, the models minimising the AvE and CDR 
metrics score in the top 20% of models considered here. The RMSE scores achieved by the 
elected models are compared against all the other models in Figure 10.

Figure 9 CDR score for BF method on the training data
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Table 7 RMSE of actual ultimate claims versus predicted ultimate claims

Model RMSE Delta Rank
Basic BF 576.38 – 256 out of 840
Minimise AvEscore 537.27 –6.8% 159 out of 840
Minimise CDRscore 527.90 –8.4% 139 out of 840

The predicted claims from the models found by minimising the AvEscore and CDRscore resulted 
in lower RMSE scores compared to the base BF model with a 60% expected ultimate loss 
ratio assumption. However, as shown in Figure 11, both sets of predictions underestimate 
the ultimate claims in the most recent accident years, whereas the basic BF model displays 
almost a zero bias in these years. This suggests that adding a penalty for biased estimates 
might enhance the AvEscore and CDRscore metrics.

Figure 12 shows the IBNR reserve by accident year for each approach under the BF method; 
Table 8 shows the total IBNR reserve. The basic BF IBNR results in the highest IBNR reserves 
across all accident years, with minimising the AvEscore resulting in the lowest IBNR. Minimising 
the CDRscore results in IBNR reserves only slightly larger than minimising the AvEscore.

Table 8 Total IBNR reserve for BF tuning

Model Total IBNR Delta
Basic BF 37 511 –
Minimise AvEscore 31 414 –16.3%
Minimise CDRscore 31 647 –15.6%

Figure 10 Boxplot of RMSE for all BF models
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Taking advantage of expert knowledge can be of significant value when tuning parameters, 
for example, by narrowing the search space to a range of 10% around the true value, the 
amount of computation would be reduced significantly. The search space could be restricted 
to a tighter region, or even to a single number, if the insurance book is very stable, or the 
reserving actuary has reason to believe the range to be narrower. As an example, Table 9 

Figure 11 Actual ultimate claims minus predicted ultimate claims by accident year,  
for each of the BF models

Figure 12 Comparison of IBNR reserves by accident year
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shows the RMSE of the projected ultimate claims against the actual ultimate claims for the BF 
method when fixing the expected ultimate loss ratio to an estimate of 60%. The table shows 
that, in this case, slight accuracy gains are made compared to when the models searched over 
the wider range of 50%–70%.

In terms of the ranking of the models, optimising over the smaller search space results 
in the model with median performance being selected when minimising the AvE score, 
whereas minimising the CDR score results in a model that performs better than the median. 
All scores of the models in the smaller search space are shown in Figure 13.

Table 9 RMSE of actual ultimate claims versus predicted ultimate claims

Model RMSE Delta Rank
Basic BF 576.37 – 24 out of 40
Minimise AvEscore 516.29 –10.4% 20 out of 40
Minimise CDRscore 509.74 –11.6% 15 out of 40

4.3	 The generalised Cape Cod method
The GCC method requires the choice of an exponential decay factor that is used to 

weight the contribution of the accident years in calculating the expected ultimate loss ratio. 
Table 10 shows the same search space as the CL method, expanded to include a search over 
possible choices for the decay parameter of the GCC method in 5% increments in the range 
0% to 100% (i.e. including the CL method when the decay parameter is 0 and the GCC 
method when the decay parameter is 100%).

Figure 13 Boxplot of RMSE for models in narrow BF search space
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Table 10 Search space for GCC method

Parameter Choice set Description
drop_high [True, False] Whether to drop the highest individual development factors, i jf ,  in 

all development periods
drop_low [True, False] Whether to drop the lowest individual development factors, i jf ,  in all 

development periods
n_periods k  [10..19] Number of accident years over which to calculate jf

decay γ  {0.00, 0.05, …, 0.95, 1.00} Decay parameter for the GCC method

Table 11 shows the parameters that were found to minimise the AvEscore and CDRscore using 
the training data. Using a maximum of 11 of the most recent accident years was found to 
minimise both the AvE score and the CDR score. Minimising the AvE score resulted in 
the choice of a decay factor of 0%, in other words, the CL method was selected, whereas 
a parameter value of 95% was chosen when minimising the CDR score. Figures 14 and 15 
show the AvEscore and CDRscore metrics for each combination of the options in Table 10 on the 
training data. The GCC method is very sensitive to the choice of decay parameter and it can 
be seen from these figures that the optimal range of decay parameters is strongly influenced 
by which of the AvE or CDR metrics is being considered, with the CDR metric producing 
a range of parameters much closer to what would be selected in practice by an actuary 
reserving for a long-tail line.

In the following table, we also show results for the GCC with an heuristic assumption 
of a decay parameter of 75% for comparison purposes, as is sometimes the practice based on 
Struzzieri et al. (1998), and we refer to this model as the basic GCC model.

Table 11 Best parameters found for GCC method

Parameter Basic GCC Minimise AvEscore Minimise CDRscore

drop_high False False True

drop_low False False False

n_periods 19 11 11

decay 0.75 0.00 0.95

Table 12 shows the RMSE of the projected ultimate claims using the GCC method against 
the actual ultimate claims. Minimising the AvE score results in a model that does not 
perform well, whereas minimising the CDR score once again selects a model with the best 
generalisation of the three models, with a score in the top 10% of all models. The scores for 
all models are shown in Figure 16.
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Table 12 RMSE of actual ultimate claims versus predicted ultimate claims

Model RMSE Delta Rank
Basic GCC 604.27 – 366 out of 800
Minimise AvEscore 670.69 +11.0% 595 out of 800
Minimise CDRscore 580.21 -4.0% 72 out of 800

Minimising the AvEscore results in a higher RMSE score compared to the basic GCC with a 
75% decay. This is due to the spoor predictions of the selected model for the accident years 
subsequent to 1991, as shown in Figure 17. Minimising the CDRscore provides similar and 
relatively accurate results in all accident years.

Figure 14 AvE score for CC method on the training data
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Figure 18 shows the IBNR reserve by accident year for each approach using the GCC method, 
with the aggregate IBNR given in Table 13. The basic GCC method results in the highest 
IBNR reserves across all accident years, while minimising the CDRscore and the AvEscore results 
in similar figures that are lower than the reserves produced by the basic GCC method.

Table 13 Total IBNR reserve for GCC tuning

Model Total IBNR Delta
Basic GCC 37 511 –
Minimise AvEscore 31 414 –16.3%
Minimise CDRscore 31 647 –15.6%

Figure 15 CDR score for CC method on the training data
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4.4	 Summary
We now assess which one of the three methods (CL, BF or GCC) we would have selected 

based on the AvE and CDR metrics calculated on the training data, which we show in Table 14. 
That is, we investigate which method produced the lowest AvE and CDR scores on the training 
data among the three methods analysed in the previous sections and what the implications of 
choosing that method would be for the out-of-sample predictive performance of that method.

Figure 16 Boxplot of RMSE for all CC models

Figure 17 AvE by accident year for GCC models
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The lowest CDRscore on the training data was produced using the BF method, which also 
produces the best results on the out-of-sample data. On the other hand, the AvEscore metric 
is minimised on the training data by the CL method. If presented with a choice between the 
CL and BF methods on a liability line of business, applying judgement would probably lead 
to the selection of the BF method, and selecting this method on the basis of the low CDR 
score shown for the BF method in Table 14 would have provided good performance on the 
out-of-sample data. We discuss this more in the conclusion to the paper.

Table 14 Lowest training set scores for each method and score

CL BF GCC
AvEscore 515.16 555.73 516.87
CDRscore 646.56 486.88 556.60

5.	� CASE STUDY 2: QUARTERLY INCURRED TRIANGLES FROM MEDIUM-
SIZE INSURER
We now apply the framework to two quarterly incurred triangles that, compared to 

the Swiss triangle in the previous section are much more unstable, due probably to a lower 
volume of business written by the medium-sized insurer that supplied the triangles. These 
triangles exhibit some interesting characteristics that often occur in real-world exercises: 
individual accident quarters can be affected by single large claims, there is a non-constant loss 
ratio implied by the ultimate losses, and premium rates change over the period, although the 
premium rate information is not usually available to adjust the earned premium figures. Since 

Figure 18 Comparison of IBNR reserves by accident year
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these triangles are quite representative of some real-world reserving exercises performed by 
the authors for smaller insurers, if some extra accuracy relative to traditional methods can be 
achieved by applying the framework developed in this study to these triangles, then this should 
be a good indicator of potential gains from applying the framework in this paper in these cases.

The first triangle represents one class of short-tail property related perils, and the 
second triangle represents one class of long-tail liability related perils. The triangles were 
provided by a branch of a global insurer2 and cover accident quarters from 2010Q1 through 
to 2014Q4. The figures have been adjusted to preserve confidentiality by dividing by a 
random number, and the earned premium has been normalised to an average loss ratio 
(across all development quarters) of 50%. The triangles appear in Appendix A and follow the 
same colouring scheme as in Section 3.

Unlike the previous section, a full discussion of each reserving method will not be 
provided here, rather, the method that results in the lowest MSE (after finding each method’s 
optimal parameter set) will be assessed. This adds an additional choice to the search space, 
i.e. which of the three methods (CL, BF, and GCC) is selected. Different models were assessed 
using the 2012Q1 to 2014Q3 accident quarters as a training set, resulting in 11 calendar 
quarters on which these were assessed. The final calendar quarter, 2014Q4, was used for 
scoring the models which were fit on 2014Q3. The out-of-sample performance of each model 
was assessed on the subsequent development of all of the accident quarters.

Table 15 shows the sub-set of the search space, M, of models considered. Note that the 
left column details the method the parameters apply to.

Table 15 Search space for quarterly triangles

Method Parameter Choice set Description
All drop_high [True, False] Whether to drop the highest individual development factors, 

i jf ,  in all development periods
All drop_low [True, False] Whether to drop the lowest individual development factors, 

i jf ,  in all development periods
All n_periods k  [5..21] Number of accident years over which to calculate jf
BF apriori α  {0.40, 0.41, …, 0.59, 0.60} Apriori loss ratio for the BF method
GCC decay γ  {0.00, 0.05, …, 0.95, 1.00} Decay parameter for the GCC method

5.1	 Long-tail liability line
It was found that the BF method resulted in the smallest AvEscore and the smallest 

CDRscore for the long-tail liability line of business. The parameters found for these respective 
methods are given in Table 16. In terms of loss development factors, the optimal models do 
not drop the highest and lowest individual development factors in the triangle. Minimising 

2	 The authors wish to thank the management and actuarial department of the insurer for supporting 
this research by providing data.
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the AvEscore resulted in 10 accident periods being chosen to calculate the development factors, 
whereas minimising the CDRscore resulted in 11 periods being chosen. Minimising the AvEscore 
produced an expected ultimate loss ratio of 46%, and minimising the CDRscore produced an 
expected ultimate loss ratio of 41%. We compare these models to the basic GCC method with 
a decay parameter of 75%.

Table 16 Optimal parameters found for the long-tail line

Parameter Basic GCC Minimise AvE Minimise CDR
drop_high False False False
drop_low False False False
n_periods 21 10 11
apriori n/a 0.46 0.41
decay 0.75 n/a n/a

Table 17 shows the RMSE of the projected ultimate claims against the actual ultimate claims.

Table 17 RMSE of actual ultimate claims versus predicted ultimate claims for the long-tail line
Model RMSE Delta Rank
Basic GCC 3 170.88 – 1073 out of 1 848
Minimise AvEscore 2 552.39 –19.5% 461 out of 1 848
Minimise CDRscore 2 893.23 –8.8% 832 out of 1 848

Figure 19 Boxplot of RMSE for models in search space
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Minimising the AvEscore results in the best prediction of ultimate claims when measured by 
RMSE, while minimising the CDRscore improves on the basic CC method, but does not produce 
a model with better predictions than that produced by minimising the AvEscore. This is perhaps 
due to changing calendar year trends within the triangle, which would somewhat invalidate the 
CDRscore objective of keeping reserve figures constant over time (we discuss this further in the 
conclusion). Minimising the AvE leads to the selection of a model that is in the top 25% of all 
methods and parameters considered, as measure by performance on the out-of-sample data.

Figure 20 shows that minimising both scores reduces the under-estimation of the 
ultimate claims for each accident quarter.

Figure 21 shows the IBNR reserve by accident year for each approach and Table 18 shows 
the total IBNR for all accident years. Overall, the optimal methods resulted in a substantially 
higher IBNR, indicating that the basic GCC method underestimates the IBNR considerably.

Table 18 Total IBNR reserve for tuning: long-tail
Model Total IBNR Delta
Basic GCC 20 859 –
Minimise AvEscore 44 731 +114%
Minimise CDRscore 37 155 +78%

5.2	 Short-tail property line
Following the same procedure as for the long-tail line, minimising the AvEscore and 

CDRscore on the data for the short-tail property line indicated that, for both metrics, the 

Figure 20 AvE by accident quarter for long-tail
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BF method is optimal. The optimal parameter sets are given in Table 19. It was found that 
dropping the lowest individual development factors minimised both the AvE and CDR 
scores, and that, for calculating the development factors, the use of 17 development periods 
minimised the AvE score whereas 11 development periods minimised the CDR score. Both 
the CDR and AvE metrics provide the same choice of expected loss ratio, only differing in the 
choice of the number of accident periods to consider.

Table 19 Optimal parameters found for the short-tail line

Parameter Basic GCC Minimise AvE Minimise CDR
drop_high False False False
drop_low False True True
n_periods 21 17 11
apriori n/a 60% 60%
decay 75% n/a n/a

Table 21 shows the RMSE of the projected ultimate claims against the actual ultimate claims, 
which provide some improvement over the basic GCC method used for comparison when 
the AvE metric is used, but no improvement with the CDR score. These results are compared 
against all the models considered here in Figure 22.

Figure 23 shows that whereas the basic GCC method estimates the actual claims in 
the most recent accident quarter quite well, the models selected using the scoring procedure 
perform quite poorly, overestimating the IBNR required significantly. On the other hand, for 

Figure 21 Comparison of IBNR reserves by accident year
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older accident quarters, these models perform better than the basic GCC method. Inspecting 
the triangle for the short-tail line in Table 28 shows that the most recent accident quarter 
exhibits anomalously low development in the first development quarter; these LDFs are 
shown in Table 20. Whereas the more recent accident periods since 2012Q3 exhibit LDFs 
generally above 1.5, in the case of 2014Q4, the LDF is only 1.39. Thus, given the information 
available when selecting the optimal models, this seems like a more reasonable outcome than 
the figures in Table 21 might indicate.

Table 20 Loss development factors for first development period, short-tail triangle

1̂f

2010Q1 1.585
2010Q2 1.316
2010Q3 1.196
2010Q4 1.362
2011Q1 1.268
2011Q2 1.371
2011Q3 1.345
2011Q4 1.532
2012Q1 1.636
2012Q2 1.367
2012Q3 1.431
2012Q4 1.525
2013Q1 1.512
2013Q2 1.316
2013Q3 1.470
2013Q4 1.611
2014Q1 1.808
2014Q2 1.591
2014Q3 1.542
2014Q4 1.392

For earlier accident quarters, the optimal parameter set slightly underestimates the ultimate 
claims for each accident quarter, however, this is less than the underestimation produced 
by the basic GCC method. Note that the IBNR for these accident periods is estimated to be 
negative, as shown in Figure 24, thus, a lower underestimation results in higher IBNR.

In aggregate, the optimal models produce a smaller IBNR reserve in all but the latest 
accident quarter, as seen in Figure 24. Overall, Table 22 shows that the total IBNR is much 
larger when calculated using the optimal models.
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Table 21 RMSE of actual ultimate claims versus predicted ultimate claims for the short-tail line

Model RMSE Delta Rank
Basic GCC 638.38 – 1 107 out of 1 848
Minimise AvEscore 626.73 -1.8% 1 050 out of 1 848
Minimise CDRscore 794.65 +24.5% 1 497 out of 1 848

Figure 22 Boxplot of RMSE for models in search space

Figure 23 AvE by accident quarter for short-tail line
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Table 22 Total IBNR reserve for tuning: short-tail

Model Total IBNR Delta
Basic GCC 2 971 –
Minimise AvEscore 8 226 +177%
Minimise CDRscore 9 602 +223%

5.3	 Summary
In this section, we have demonstrated that compared to the basic application of the 

reserving methods, the framework presented here works well on incurred triangles (the 
previous section demonstrated the method on paid triangles) and a more optimal amount of 
negative IBNR was calculated for the short-tail line. This is despite the quite messy triangles 
utilised in this section. We have also seen some limitations on the use of a single loss ratio 
for all accident periods in the BF method, and we discuss this point more in the last section. 
Also, compared to the findings on the Swiss triangle, where models selected using the CDR 
score were more optimal, on both triangles considered here, the models selected using the 
AvE score were better.

6.	 DISCUSSION AND CONCLUSION
In this paper, we have presented a framework for selecting reserving models that are 

expected to perform well in predicting out-of-sample claims development experience and 
demonstrated that, on three example triangles, our proposal performs relatively well. Thus, 
we can conclude that scoring reserving models based on historical claims development data 

Figure 24 Comparison of IBNR reserves by accident year
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provides a useful way of determining which models are likely to predict the future claims 
development experience well. Also, our framework provides a way to select reserving methods 
and the parameters of these methods in a relatively objective manner and to show that the 
selected methods produce a best estimate of IBNR reserves. This increased objectivity might 
be particularly useful when setting loss ratios for the BF method, or the decay parameter for 
the GCC method, both of which in practice are usually done in a subjective manner.

On a large and stable triangle comprised of Swiss private liability claims, the best 
models were identified by scoring the competing models using the CDR metric, whereas 
on two smaller and more volatile incurred triangles, the best models were identified using 
the AvE metric. Since there is much less certainty about the total IBNR required for the 
large triangle, it is more reasonable to use the CDR metric which penalises models that do 
not produce stable reserve estimates at subsequent calendar periods. On the other hand, 
on the more volatile triangles where the required IBNR is much more uncertain and could 
change significantly as more information becomes available, the AvE metric appears to be 
a better choice. Although we do not report on these calculations in detail, the coefficient of 
variation (CoV) of the CL reserves (measured using the Mack Standard Error (Mack, 1993)) 
for the Swiss triangle is around 0.135, whereas the CoV is approximately 0.67 and 1.9 for the 
long-tail and short-tail lines respectively, i.e. the uncertainty is almost as large as the reserve 
estimates. Thus, considering reserve volatility could be one way of determining which of the 
AvE or CDR metrics should be used. Nonetheless, more research into this is required.

We briefly consider some implications of applying the framework in a practical 
situation. It is unlikely that an actuary would accept automatic IBNR estimates without first 
interrogating these in some detail. One way in which this could be done is by comparing the 
estimated ultimate claims and LDFs produced by the models selected using the framework, 
with those selected using a more traditional actuarial analysis. By reconciling between the 
different models, we believe extra insight into the claims development experience can be 
generated and an opinion regarding the optimal model for a triangle can be formed. On 
the other hand, when reserving using triangles for the first time, applying the framework 
presented here could enable the actuary to produce quickly a baseline set of reserves estimates, 
which can then be modified according to a traditional analysis. Finally, by selecting reserving 
models that are expected to minimise the AvE or CDR metrics, the amount of effort necessary 
to explain reserve movements and adverse development should be reduced.

The framework presented in this study could be extended in several ways. Among the 
most important of these extensions is to search over different loss ratios for each accident 
period. To achieve this, a much larger search space must be considered and the simple grid 
search used in this study will no longer be feasible. A simple solution might be to consider a 
two-step procedure, as was suggested in Section 4.2, or use more advanced techniques such 
as Bayesian optimisation. Another avenue for future research is to investigate the longer 
term impact of estimating reserves using an optimal model on reserve risk capital. Finally, 
more investigation into criteria for defining optimal predictions for IBNR reserves is needed. 
Here, we have evaluated the final models based on the MSE between the predicted and actual 
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ultimate claims. However, we have not considered the different components of the MSE, 
which can be decomposed into bias and variance. Future research could consider whether 
minimising the bias or variance component is more optimal for actuarial reserving purposes.
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APPENDIX A

Triangles
Note that the triangles shown in this appendix are coloured according to the scheme 
mentioned in Section 3.

Table 23 Simulated earned premium for Swiss triangle shown in Table 24

EP
1979 17 684
1980 18 762
1981 22 056
1982 25 489
1983 24 819
1984 26 887
1985 31 782
1986 32 585
1987 32 726
1988 36 372
1989 36 873
1990 38 938
1991 42 109
1992 40 818
1993 43 180
1994 47 061
1995 48 428
1996 52 565
1997 52 728
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Table 25 Earned premium for long-tail liability triangle shown in Table 26
EP

2010Q1 25 728
2010Q2 25 975
2010Q3 24 954
2010Q4 24 478
2011Q1 23 899
2011Q2 21 730
2011Q3 15 232
2011Q4 11 990
2012Q1 11 731
2012Q2 11 503
2012Q3 13 317
2012Q4 14 270
2013Q1 15 193
2013Q2 15 077
2013Q3 18 804
2013Q4 17 930
2014Q1 18 825
2014Q2 20 181
2014Q3 20 891
2014Q4 23 654
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Table 27 Earned premium for short-tail triangle shown in Table 28

EP
2010Q1 51 347
2010Q2 53 877
2010Q3 54 577
2010Q4 55 527
2011Q1 56 768
2011Q2 57 244
2011Q3 58 405
2011Q4 59 912
2012Q1 60 339
2012Q2 61 308
2012Q3 60 262
2012Q4 60 513
2013Q1 62 668
2013Q2 63 109
2013Q3 62 934
2013Q4 63 694
2014Q1 64 467
2014Q2 66 843
2014Q3 68 594
2014Q4 69 621
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