

Analysis of tontines from the insurer's perspective

Manuel Rach, Ulm University

with:

An Chen (Ulm University) Montserrat Guillen (Universitat de Barcelona)

Workshop ifa & IVW

Ulm, October 8, 2020

Motivation

Manuel Rach

Data taken from Statistisches Bundesamt (Destatis) (2019).

Motivation

- Low interest rates, changing demographics and tightening solvency regulation lead to an increased awareness of the risks contained in retirement products.
- Innovative products: Group self-annuitization, pooled annuity funds and tontines (Piggott et al. (2005), Valdez et al. (2006), Stamos (2008), Sabin (2010), Donnelly et al. (2013, 2014) and Milevsky and Salisbury (2015)).

(Dis)advantages of annuities and tontines

	Annuity	Tontine
Policyholder	Stable paymentsHigh prices	Volatile paymentsCheaper than annuity
Insurer	 High risk capital requirement Low demand ("Annuity Puzzle") 	Lower risk capital requirementHigher demand?

Objectives

- Today's focus: Insurer's perspective
- ➤ To make tontines appealing for insurers, fees may be charged to administrate tontines.
- Goals of the paper:
 - Compare different fee structures
 - Determine the critical fee which makes policyholders indifferent between an annuity and a tontine
 - Analyze quantities of interest to the insurer under this critical fee

Selected results

- Policyholders are indifferent between a single up-front fee and a fixed percentage being deducted from the retirement benefits over time if the initial values of both fees are identical.
- Sabin (2010) writes that annuities are 14% higher than fair. Given such an annuity, the insurer may charge a fee of up to 12.5% for a tontine from the policyholder.
- ► Tontines are a lot less volatile than annuities, i.e. the fee is an almost certain profit.

Annuity and Tontine

- Following Yaari (1965), we consider continuous-time payment streams.
- \triangleright ζ is the residual lifetime of the considered individual.
- - ightharpoonup c(t) is a deterministic function.
- ► Tontine: $b_{OT}(t) = \mathbb{1}_{\{\zeta > t\}} \frac{n}{N(t)} d(t)$
 - ightharpoonup d(t) is a deterministic function.
 - n is number of initial homogeneous policyholders.
 - \triangleright N(t) is the number still alive at time t.

Example in discrete time

1st year

$$d(1) = 800, N(1) = 8$$

2nd year

$$d(2) = 800, N(2) = 7$$

3rd year

$$d(1) = 800, N(1) = 8$$
 $d(2) = 800, N(2) = 7$ $d(3) = 720, N(3) = 7$
 $nd(1)/N(1) = 800$ $nd(2)/N(2) \approx 914$ $nd(3)/N(3) \approx 823$

Mortality risk

Unsystematic mortality risk

- Stems from the fact that the lifetime of a person is unknown but still follows some certain mortality law.
- Can initially be diversified by a large pool size

Systematic mortality risk

- Stems from the fact that the true mortality law cannot be determined explicitly.
- Cannot be diversified as it affects the pool as a whole

Mortality risk

- \triangleright tp_x is the t-year survival probability of an x-year old.
- ▶ Apply random longevity shock ϵ with values in $(-\infty, 1)$ to obtain $_tp_x^{1-\epsilon}$
- $ightharpoonup f_{\epsilon}$ and m_{ϵ} are the density and the moment-generating function of ϵ .
- \triangleright ζ_{ϵ} and $N_{\epsilon}(t)$ depend on the shock ϵ .

Two fee structures

Fixed initial fee M_0/n subtracted at the beginning:

$$b_{OT}^F(t) := \mathbb{1}_{\{\zeta_{\epsilon} > t\}} \frac{nd^F(t)}{N_{\epsilon}(t)}.$$

▶ Time-varying proportional fee $\alpha(t)$ subtracted over time:

$$b_{OT}^{V}(t) := \mathbb{1}_{\{\zeta_{\epsilon} > t\}} \frac{(1 - \alpha(t)) n d^{V}(t)}{N_{\epsilon}(t)}.$$

Premium calculation

- Let r be the constant risk-free interest rate.
- ▶ Premium under fixed initial fee M_0/n :

$$P_0^F = \mathbb{E}\left[\int_0^\infty e^{-rt}b_{OT}^F(t)dt\right]$$

$$= \int_0^\infty e^{-rt}d^F(t)\int_{-\infty}^1 \left(1 - \left(1 - tp_x^{1-\varphi}\right)^n\right)f_{\epsilon}(\varphi)d\varphi dt$$

$$\widetilde{P}_0^F = P_0^F + \frac{M_0}{n}$$

Premium calculation

Premium under time-varying proportional fee $\alpha(t)$:

$$P_0^V = \mathbb{E}\left[\int_0^\infty e^{-rt}b_{OT}^V(t)dt\right]$$

$$= \int_0^\infty e^{-rt}(1-\alpha(t))d^V(t)\int_{-\infty}^1 \left(1-\left(1-tp_x^{1-\varphi}\right)^n\right)f_{\epsilon}(\varphi)d\varphi dt$$

$$\widetilde{P}_0^V = P_0^V + \int_0^\infty e^{-rt}\alpha(t)d^V(t)\int_{-\infty}^1 \left(1-\left(1-tp_x^{1-\varphi}\right)^n\right)f_{\epsilon}(\varphi)d\varphi dt$$

Optimization problem under fixed initial fee

- Consider a retiree endowed with an initial wealth v > 0, a utility function $u(y) = \frac{y^{1-\gamma}}{1-\gamma}$, $\gamma > 1$, $\gamma \neq 1$ and a subjective discount factor ρ .
- At time 0, the **policyholder solves**:

$$\max_{d^F(t)} \mathbb{E} \left[\int_0^\infty e^{-\rho t} u \left(\frac{n d^F(t)}{N_{\epsilon}(t)} \right) \mathbb{1}_{\{\zeta_{\epsilon} > t\}} \mathrm{d}t \right]$$

subject to $P_0^F + \frac{M_0}{n} \le v$

► To solve this (explicitly), rearrange the budget constraint to $P_0^F \leq v - \frac{M_0}{n}$ and apply Theorem 2 in Chen et al. (2019).

Optimization problem under time-varying proportional fee

► At time 0, the policyholder solves:

$$\max_{d^{V}(t)} \mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} u\left(\frac{n(1-\alpha(t))d^{V}(t)}{N_{\epsilon}(t)}\right) \mathbb{1}_{\{\zeta_{\epsilon}>t\}} \mathrm{d}t\right] \text{ subject to}$$

$$P_{0}^{V} + \int_{0}^{\infty} e^{-rt} \alpha(t)d^{V}(t) \int_{-\infty}^{1} \left(1 - \left(1 - tp_{x}^{1-\varphi}\right)^{n}\right) f_{\epsilon}(\varphi) \,\mathrm{d}\varphi \,\mathrm{d}t \leq v$$

Explicit solution:

$$d^{V*}(t) = \frac{e^{\frac{(r-\rho)t}{\gamma}}(1-\alpha(t))^{1/\gamma-1} \left(\kappa_{n,\gamma,\epsilon}(tp_X)\right)^{1/\gamma}}{\lambda_V^{1/\gamma} \left(\int_{-\infty}^1 \left(1-\left(1-tp_X^{1-\varphi}\right)^n\right) f_{\epsilon}(\varphi) d\varphi\right)^{1/\gamma}}.$$

Optimization problem under time-varying proportional fee

The optimal Lagrangian multiplier λ_V is given by

$$\lambda_{V} = \left(\frac{1}{v}\left(\int_{0}^{\infty} e^{\left(\frac{1}{\gamma}-1\right)rt-\frac{1}{\gamma}\rho t} \cdot \frac{\left(1-\alpha(t)\right)^{1/\gamma-1}\left(\kappa_{n,\gamma,\epsilon}(tp_{x})\right)^{1/\gamma}}{\left(\int_{-\infty}^{1} \left(1-\left(1-tp_{x}^{1-\varphi}\right)^{n}\right) f_{\epsilon}(\varphi) d\varphi\right)^{1/\gamma-1}} dt\right)\right)^{\gamma},$$

where

Manuel Rach

$$\kappa_{n,\gamma,\epsilon}(tp_x) = \sum_{k=1}^n \binom{n}{k} \left(\frac{k}{n}\right)^{\gamma} \int_{-\infty}^1 \left(tp_x^{1-\varphi}\right)^k \left(1 - tp_x^{1-\varphi}\right)^{n-k} f_{\epsilon}(\varphi) \,\mathrm{d}\varphi.$$

The optimal level of expected utility is given by

$$U_V = \frac{1}{1-\gamma} \cdot \lambda_V \cdot v.$$

Manuel Rach

Comparison of the fee structures

- Is there a preferable fee structure for the policyholder?
- ► To compare the fee structures, it shall hold:

$$M_0 = \int_0^\infty e^{-rt} \,\alpha(t) \, n \, d^V(t) \int_{-\infty}^1 \, \left(1 - \left(1 - {}_t p_X^{1-\varphi}\right)^n\right) f_\epsilon(\varphi) \, \mathrm{d}\varphi \, \mathrm{d}t.$$

- ▶ Under this assumption and if $\alpha(t) = \alpha$, it holds $U_V = U_F$.
- ▶ A decreasing fee $\alpha(t)$ results (numerically) in $U_V < U_F$.

Manuel Rach

Gompertz law (Gompertz (1825))

For a modal age at death m > 0 and a dispersion coefficient $\beta > 0$, the force of mortality is, for any x and $t \ge 0$, given by

$$\mu_{x+t} = \frac{1}{\beta} e^{\frac{x+t-m}{\beta}}.$$

► This implies that the t-year survival probability of an x-year old is given by

$$_{t}p_{x}=e^{e^{rac{x-m}{eta}}\left(1-e^{rac{t}{eta}}
ight)}.$$

Parameter setup

Manuel Rach

Initial wealth	Pool size	Risk aversion
<i>v</i> = 100	<i>n</i> = 1000	$\gamma=$ 4
Fee	Risk-free rate	Subjective discount rate
$M_0 = 5000$	r = 0.01	ho = r
Initial age	Gompertz law	Longevity shock
<i>x</i> = 65	$m = 88.721, \beta = 10$	$\epsilon \sim \mathcal{N}_{(-\infty,1)} \left(-0.0035, 0.0814^2 \right)$

Table: Base case parameter setup. A pool size of n = 1000 is used e.g. in Qiao and Sherris (2013), m and β are chosen as in Milevsky and Salisbury (2015), the parameters of the shock are taken from Chen et al. (2019) and the risk-free interest rate is suggested by Statista (2019).

Numerical example

Figure: Optimal payoff for two fee levels $M_0/n = 5$ and $M_0/n = 0$.

Indifference Fee

- For a given annuity fee Δ_0 , how high is the **maximum** tontine fee the insurer may charge?
- ► The indifference fee of the tontine is chosen such that the policyholder is **indifferent** between an annuity and a tontine.
- ► Indifference fee M_0^*/n is defined by

$$\lambda_F \left(v - \frac{M_0^*}{n} \right) = (v - \Delta_0)^{1-\gamma} \left(\int_0^\infty e^{\left(\frac{1}{\gamma} - 1\right)rt - \frac{1}{\gamma}\rho t} \int_{-\infty}^1 t \rho_X^{1-\varphi} f_{\epsilon}(\varphi) \, \mathrm{d}\varphi \, \mathrm{d}t \right)^{\gamma}.$$

Indifference fee

Figure: Indifference fee of the tontine in dependence of the relative risk aversion γ . The fee levels of the annuity are based on Chen et al. (2019) and Sabin (2010).

Mean and variance analysis

Manuel Rach

Expected profit at time 0 of the annuity is higher than that of the tontine:

$$\Delta_0 > M_0^*/n$$
.

► Tontine payoff from the insurer's perspective:

$$B_{OT}(t) = nd(t)\mathbb{1}_{\{N_{\epsilon}(t)>0\}}.$$

Annuity payoff from the insurer's perspective:

$$B_A(t) = c(t)N_{\epsilon}(t).$$

Variance analysis

Figure: Variance of the annuity and tontine payoffs $Var(B_A(t))$ and $Var(B_{OT}(t))$ from the insurer's perspective over time. The fee charged for the tontine is the indifference fee.

Coefficient of variation analysis

Figure: Difference of the coefficients of variation of the annuity and tontine payoffs $CV(B_A(t)) - CV(B_{OT}(t))$ from the insurer's perspective over time.

Figure: Quantiles of the annuity and tontine payoffs from the insurer's perspective over time. The fee charged for the annuity is $\Delta_0=14$. The fee charged for the tontine is the indifference fee which is equal to 13.42 for $\gamma=4$.

Analysis of the reserves

Manuel Rach

- ► Following Börger (2010) and Chen et al. (2019), we assume that mortality evolves according to best-estimate assumptions.
- Reserve of the tontine:

$$tV_{x}^{OT} = n_{t}p_{x} \int_{t}^{\infty} e^{-r(s-t)} \cdot \int_{-\infty}^{1} \left(1 - (1 - s_{-t}p_{x+t})^{n}\right) f_{\epsilon}(\varphi) d\varphi \cdot d(s) ds$$

Reserve of the annuity:

$$_{t}V_{x}^{A}=n_{t}p_{x}\int_{t}^{\infty}e^{-r(s-t)}_{s-t}p_{x+t}\cdot m_{\epsilon}(-\ln_{s-t}p_{x+t})c(s)\,\mathrm{d}s.$$

Analysis of the reserves

Figure: Reserves of the annuity and tontine over time. The fee charged for the tontine is the indifference fee.

Summary

- Policyholders are indifferent between a single up-front fee and a fixed percentage being deducted from the retirement benefits over time if the initial values of both fees are identical.
- Insurers may charge a fee close to that of annuities for tontines from the policyholder.
- ► Tontines are a lot less volatile than annuities, i.e. the fee is an almost certain profit.

References I

- Börger, M. (2010). Deterministic shock vs. stochastic value-at-risk an analysis of the Solvency II standard model approach to longevity risk. *Blätter der DGVFM*, 31(2):225–259.
- Chen, A., Hieber, P., and Klein, J. K. (2019). Tonuity: A novel individual-oriented retirement plan. *ASTIN Bulletin: The Journal of the IAA*, 49(1):5–30.
- Donnelly, C., Guillén, M., and Nielsen, J. P. (2013). Exchanging uncertain mortality for a cost. *Insurance: Mathematics and Economics*, 52(1):65–76.
- Donnelly, C., Guillén, M., and Nielsen, J. P. (2014). Bringing cost transparency to the life annuity market. *Insurance: Mathematics and Economics*, 56:14–27.
- Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. *Philosophical transactions of the Royal Society of London*, 115:513–583.

References II

- Milevsky, M. A. and Salisbury, T. S. (2015). Optimal retirement income tontines. *Insurance: Mathematics and Economics*, 64:91–105.
- Piggott, J., Valdez, E. A., and Detzel, B. (2005). The simple analytics of a pooled annuity fund. *Journal of Risk and Insurance*, 72(3):497–520.
- Qiao, C. and Sherris, M. (2013). Managing systematic mortality risk with group self-pooling and annuitization schemes. *Journal of Risk and Insurance*, 80(4):949–974.
- Sabin, M. J. (2010). Fair tontine annuity. *Available at SSRN:*, https://ssrn.com/abstract=1579932.
- Stamos, M. Z. (2008). Optimal consumption and portfolio choice for pooled annuity funds. *Insurance: Mathematics and Economics*, 43(1):56–68.
- Statista (2019). Average risk-free investment rate in germany 2015-2019. Website. Available online on https://www.statista.com/statistics/885774/average-risk-free-rate-germany/; accessed on October 23, 2019.

References III

- Statistisches Bundesamt (Destatis) (2019). 14. koordinierte

 Bevölkerungsvorausberechnung für Deutschland. Website. Available online on

 https://service.destatis.de/bevoelkerungspyramide/index.html;
 accessed on Sept 21, 2020.
- Valdez, E. A., Piggott, J., and Wang, L. (2006). Demand and adverse selection in a pooled annuity fund. *Insurance: Mathematics and Economics*, 39(2):251–266.
- Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer. *The Review of Economic Studies*, 32(2):137–150.