

Artificial neural networks basics, part 1 - forwardpass

An elementary introduction

Dr. Stefan Nörtemann, msg life central europe

Introduction

What's this about?

- What are neural networks?
- Who invented them?
- What are the basic components?
- How do they work?
- And why do they work?

Introduction

What's this about?

- What are neural networks?
- Who invented them?
- What are the basic components?
- How do they work?
- And why do they work

Neuronal networks

Motivation from brain research

- Ramón y Cajál (1911): The idea of neurons
- The brain as an extremely efficient computer
- Imitation of intelligence

Neural Networks & Deep Learning

ּחָבּ

Warren McCulloch & Walter Pitts, 1943

- first idea for an artificial neural network, consisting of linked elementary units
- for the calculation of logical and arithmetic functions

Frank Rosenblatt, 1958

- Neurocomputer Marc I Perceptron: Multi-Layer Perceptron
- Idea: Very many calculation units that only become "intelligent" through their interaction
- > Since then a constant up and down: hypes and disillusions
- > Boom for about 10 years due to the enormous increase in computing capacity

Warren McCulloch and Walter Pitts

kNN: Input - Hidden layers - Output

- idea: "make it like the human brain"
- method: Linking of so-called artificial neurons (units)
- components: input units, hidden layer, output units
- connections: exchange of data (= numbers)
 between the units

hidden layer

- each connection has a weight (which can "change")
- in each unit an input is processed and an output is generated, which can again be an input for a downstream unit.

hidden layer o u t p u t

kNN: Activation function(s)

The output of a unit is calculated from the sum of the weighted input values, possibly a bias b and a so-called activation function f.

Examples of activation functions

• Leaky ReLU $f(x, \theta) = \max(\alpha(x - \theta), x - \theta), \alpha > 0$ small

• ...

Activation function: f = ReLU(0.5)

Activation function: f = ReLU(0.5)

Activation function: f = ReLU(0.5)

Forward propagation

Activation function: f = ReLU(0.5)

Zoom into the unit (E)

Activation function: f = ReLU (0.5)

$$f\left(\sum_{i=1}^{4} w_i \cdot x_i\right) = f(0.5 \cdot 1 + 0.2 \cdot 0.5 + 1 \cdot 0.2 + (-0.5) \cdot 0.4) = f(0.6) = \mathbf{0.6}$$

Forward propagation

Activation function: f = ReLU(0.5)

Excursus: Matrix notation - forward propagation

$$I = \begin{pmatrix} 0.5 \\ 0.2 \\ 1.0 \\ 0.5 \end{pmatrix} \qquad W_{\text{Input,hidden}} = \begin{pmatrix} 1.0 & 0.5 & 0.2 & 0.4 \\ 1.5 & 2.0 & 0.4 & 2.2 \\ 0.5 & 2.0 & 0.3 & 0.1 \end{pmatrix}$$

$$W_{hidden,Output} = \begin{pmatrix} 1,5 & 2,0 & 0 \\ 0,5 & 0,4 & 1,0 \end{pmatrix}$$

$$X_{\text{hidden}} = W_{\text{Input,hidden}} \cdot I = \begin{pmatrix} 1.0 & 0.5 & 0.2 & 0.4 \\ 1.5 & 2.0 & 0.4 & 2.2 \\ 0.5 & 2.0 & 0.3 & 0.1 \end{pmatrix} \cdot \begin{pmatrix} 0.5 \\ 0.2 \\ 1.0 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 0.6 \\ 0.45 \\ 0.9 \end{pmatrix}$$

$$X_{\text{Output}} = W_{\text{hidden,Output}} \cdot Out_{\text{hidden}} = \begin{pmatrix} 1.5 & 2.0 & 0 \\ 0.5 & 0.4 & 1.0 \end{pmatrix} \cdot \begin{pmatrix} 0.6 \\ 0 \\ 0.9 \end{pmatrix} = \begin{pmatrix} 0.9 \\ 1.2 \end{pmatrix}$$

Out_{hidden} =
$$f(X_{hidden}) = f(\begin{pmatrix} 0,6\\0,45\\0,9 \end{pmatrix}) = \begin{pmatrix} 0,6\\0\\0,9 \end{pmatrix}$$

Output =
$$f(X_{Output}) = f(\binom{0,9}{1,2}) = \binom{0,9}{1,2}$$

Error analysis

Activation function: f = ReLU(0.5)

So what now?

- Now we know how to process an input and generate an output from it.
- We also know the output we would like to have.
- What can we do so that the generated output matches or at least comes close to the expected one?
- > This will occupy the topic in my next lecture.
- > Also here on actuview.

Thank you for your attention

Let us talk to one another

Dr. Stefan Noertemann (Aktuar DAV)

Stefan.Noertemann@msg-life.com

Tel.: +49 (0)711 949581201

www.msg-life.com